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Wildfires in France..

Accueil » Actu > Environnement » Incendies

Méga-feu en Gironde et dans les Landes: 1.000
pompiers mobilisés dont un tres grievement blessé
et 10.000 évacués face a un incendie hors de contrdle

Le méga-feu de Gironde mobilise 1.000 pompiers. / Sécurité civile
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. and elsewhere

Superficie briilée en 2023

Provinces les plus touchées par les feux de forét
En date du 6 juin 2023

Alberta 1192 489 ha
Saskatchewan 976 439 ha
Territoires du Nord-Ouest 383277 ha
Colombie-Britannique 344767 ha
Québec 327 521 ha
Ontario 31853 ha
Nouvelle-Ecosse 26 655 ha

Source: Ressources naturelles Canada, Saskatchewan Public Safety Agency, & RaDIO-CANaDa
SOPFEU =



Wildfires

° represent a major environmental risk worldwide with strong
impacts on societies, ecosystems and climate change.

o Many have been deployed
to better understand and predict wildfires.

There are two important aspects about wildfires:

. (Where? When? How many?)
. (How extreme?)
° (such as those exceeding a high size threshold) contribute

very strongly to total burnt areas and must be modeled with great care.
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Explanatory variables for wildfire risk

° = to wildfires

o Complex interactions among temperature, precipitation, humidity, wind

e Various weather-based fire-danger indices have been developed,
such as the Fire-Weather Index (FWI)

e Forests and other vegetation cover =

° human behavior, and wildfire management and
prevention, are highly important but often difficult to assess quantitatively

5/31



Wildfire data for Southeastern France
Prométhée database (since 1970s): for each wildfire,
e position (2km precision) and date of ignition, and
e burnt area (= 10000 wildfires larger than 1ha since 1995)
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Wildfire burnt areas

“1% of fires do 99% of the damage”

Left: Aggregated burnt areas per pixel (regular 8km grid)
Right: Histogram of individual wildfire sizes in km (diameters = %\/surface)
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Complex data...

° data and data
(e.g. in-situ, radar, satellite, reanalyses, regional/global climate models)

(e.g. Citizen Science data)
. , especially for extreme events

° data: Discrete/Continuous; Asymmetries; Heavy tails

’ What you see is not what you want to get‘

‘ Objectif: Transformation des données en connaissances‘
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. and complex processes to model

General setting:
= Explain/predict one or several variables of interest (called )asa
function of other variables (called / / / )

e Assessment of the influence of

Different may be relevant

° among drivers and responses

e An example of complex processes:

in the sense of IPCC/UNDRR: for a given “stake*,

Risk = Hazard(Drivers) x Vulnerability(Drivers) x Exposure(Drivers)‘
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...require sophisticated models

Desiderata for flexible model classes

e Numerous predictor variables and multiple response variables
e Non-normal probability distributions of the response

e Measurement errors

e Spatial and temporal

° about processes

Using models for decision support

e Assess various

e Intrinsic (natural) variability of phenomena
e Estimation of parameters
e Model choice

° and
o Make and long-term projections

e Stochastically generate
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Bayesian setting
We use for unknown model parameters to be estimated.

Modeling approach

® Formulate the model for data conditional to parameters.
@® Set prior distributions for parameters by including

® Infer parameters conditional to data using

Bayes' theorem

Prior variables 6.
Data y.

Prior probability Pr(6). e Mathematically simple.
Likelihood Pr(y | 8)

. - e Computationally complex,
= Posterior probability P Y P

especially if @ has many
Pr(y | 0)Pr(0) components.

Pr(y)
x Pr(y | 0)Pr(0)

Pr(6 |y) =

A\ For fixed data y, the probability Pr(y) is a parameter-free constant.
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Illustration

Prior probability density x Likelihood of data ~ Posterior density

With few observations, the prior has strong influence on the posterior model.

Probability density function

0.06

o
o
a

o
o
i

e
o
@

e
o
o

e
o

= Likelihood, P(Y/x)
= Prior, P(x)
Posterior, P(x/Y)

o

Parameter 'x'

Image credit: Balaji et al. (2013)
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The structure of Bayesian hierarchical models

flexibly combine

data
/|\

latent process

T

hyperparameters

defined by the of observations

depends on

° capturing trends, dynamics and dependence,
depends on

. controlling the latent process(es) and likelihood:

e Signal-to-noise ratio, smoothing = variance/correlation parameters
e Range of dependence, e.g., spatial range of correlation function
e Shape of the response distribution, e.g., gamma or GEV shape

Challenging estimation of numerous parameters
=
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Formal notation of Bayesian hierarchical models

A priori, we suppose that data y have been generated using a latent process
that can be represented through a random vector x.

Formal notation
Data: y = (y1,...,¥n)

Latent random vector: x = (x1,...,Xm)
Predictor: n = (n1,...,7,) = g(x) with some projection function g
yi| x,0 g w(yi | mi, 0), Likelihood of observations
x| 0 ~m(x|0) Latent process
0~ 7(0) Hyperparameters

A\ m(-) is used generically for conditional /unconditional probability densities.
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Different processes / hierarchies / data sources.

lllustration (with slightly different notations):

Many variants of hierarchical models

variants involving a biological process, for example a mechanistic model for
population dynamics or disease spread

Modéle non Modéle avec Processus Sources
hiérarchique variabilité biologique diversifiées
additionnelle explicite
P
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The class of Latent Gaussian models (LGMs)

A popular class of models widely used for spatial and spatiotemporal data.
Latent Gaussian Models
e A priori, x is an m-dimensional

x| 6 ~ Nn(p,%(6))

o (or ) A € R™™ defines a

n=(m,...,nn) = n(x) = Ax
(Observation matrix A is known and fixed in the model)

o A priori, the linear predictor 7 is also multivariate Gaussian:

n ~ No(Ap, AZ(6)AT)

= Flexible models and fast estimation with relatively large n and m
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matrix:

Recall: Gaussian vectors and fields
Gaussian distributions are characterized by their mean vector and covariance

o11 e Omm

J21 . O2m
X:(Xl,...,Xm)NN([L,Z), M= : , X= . .

Hom Oml e Omm

Gaussian fields x(s) for locations s: characterized by a mean function p(s)

and a covariance function C(s1,s;) = Cov(x(s1), x(s2))
Small range

Large range

Smooth surface

Anisotropy

17/31



Toy example: Bayesian linear model (two covariates)
How to cast the classical linear model in the latent Gaussian framework?

Vi = Bo+ B+ Bavai +ei, i N N(0,02)

We have y; | (x,0) ~ N (ni(x), 02)

1 vin va
with linear predictor ni(x) = Bo + fivai + B2vai and A =

1 vip von
e Latent Gaussian x = (5o, 51, B2) with prior

o8 0 0
x~N(@0,%), T=(0 o5 0
0 0 o3

e Gaussian likelihood in the data layer:

1 1 yi — ni(x 2
0 [ x),2) = s enp (3 2

e Hyperparameters 6 = (08,00,06)
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Example of an LGM: Poisson—lognormal model

e Models for =
Yi | Ai ~ Poisson(X;), i=1,...,n

(note: there are no hyperparameters in the Poisson distribution)

e Poisson intensity parameters are assumed to follow the log-Gaussian
distribution:

n=logA = (log1,...,log\,)" = Ax ~ N(u, AXAT)

with o = (p1,...,1n)" and X the m x m variance-covariance matrix.

e Here, we use a between the linear predictors 1 and the
likelihood parameters .

19/31



Example: Firelihood model for wildfire counts

e Observations: wildfire counts y; in voxel i (pixel-days with 8km x 8km
pixels)

e Data likelihood:
Yi | Ai ~ Poisson(\;)
e Linear predictor:

ni = log \i =Po + few1(FWI;) + fra (FA;) + fooy (DOY5)
+ fyear(YEAR;) + fprxen (PIXEL),

with nonlinear (using alOMP)
Kcomp
foomp(COMP)) = > gFOMPaOMP (coMP)),
k=1

where the observation matrix A has entries af ©™F(COMP;) in row i.

e Latent Gaussian vector:

FWI FA DOY YEAR PIXEL
x= (B, 3", 87,87, B8 ):
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Example: representation of fpixgr(PIXEL;)
A priori, frixgL is a Gaussian 2D random field.

SPDE approach (Lindgren et al. (2011); Krainski et al. (2018))

@ We discretize geographic space using a triangulation with mpixgr, nodes.

® On each node sk, we put a Gaussian variable x.

©® Latent Gaussian vector x = (X1, . . ., Xmpixgr, ) With Matérn covariance X.
@ Basis functions aj " are finite elements (“pyramids").

= Sparse precision matrices @ = X! allow working with large m

Spatial mesh Finite-element representation
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Estimating Bayesian hierarchical models

/\ Usually we cannot calculate the in closed form:
. 705 | y), 70 | y), w(ni | y)
. E(9; | y), ECx [ y), E(h(ni) | y)

A\ Latent Gaussian vector x is often very high-dimensional (up to m = 10°)

= Use , such as

w0 1y) = [ [ w(0.x|y)dxdo,

. : simulate from posterior density 7(0, x | y)

. astute numerical
integration for Latent Gaussian Models (Rue et al. 2009)

e dx: variants of Laplace approximation

e d0: variants of classical numerical integration



Simulation-based posterior inferences

of posterior quantities based on a large sample of the
estimated posterior model = Accurate propagation of posterior incertainties.

llustration : (here for a model fitted to landslides)

I Bayesian Generalized Additive Model |
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Case study: Bioeconomic projections of wildfire risk

Soft-coupling of three models:

e Climate model = Deterministic simulations EURO-CORDEX

o Statistical wildfire model = Bayesian hierarchical model Firelihood

e Economic forest sector model = Deterministic model FFSM

Firelihood

French Forest Sector Model
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Firelihood model for wildfire occurrences and sizes

e A system of latent Gaussian models for several response variables

e Our model combines several

° per pixel-day ( )

. above thresholds 10,100, 1000ha ( )

. in the intervals [1, 10], [10, 100], [100, 1000]ha (

. exceeding 1000ha ( )

e Each regression equation has a linear predictor with form

i :ﬂo + fFWI(FWL) + fFA(FAi)+
+ fyear(YEAR:) 4+ foov(DOY)) + feixer (PIXEL))

(some components may be left out)
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Estimated predictor components
Pimont et al. (2021, Ecological Applications).

Model was fitted to main fire season (June—September)
Posterior effects of Fire-Weather Index, Forest Area, Seasonal, Spatial

A. Fire Occurence Component (escaped fire number) B. Fire Size Component
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Spatial /seasonal effects account for strong residual variability not explained
by biophysical predictors.
Tail index of £ ~ 0.4 of extreme fire sizes confirms very heavy tails.
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Model-based predictions of fire numbers and sizes

We perform posterior simulation and aggregate results, here to annual scale.

Boxplots of posterior samples (dark grey = validation period 2015-2018)
vs.

Observations (red lines)

M1 prediction: number of fires M1 prediction: total BA across years
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Bioeconomic projections for the forest sector (—2100)
Riviere et al. (2022, Earth’s Future).

e For coniferous forests

e Climate scenarios : RCPs 4.5 et 8.5

e Climate projections EURO-CORDEX : 5 pairs GCM-RCM

o 30 simulations of Firelihood posterior per triplet scenario-GCM-RCM
Trend and uncertainty (top row) ; decomposition of variance (bottom row)
Burnt areas (left); A Harvested timber (middle); A Earnings (right)

Burned areas (ha)
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Discussion: Good statistical practices

Noél Cressie (2021). A few statistical principles for data science. Australian &
New Zealand Journal of Statistics.

o Geophysicists conserve energy but what do data scientists conserve?

In any well-defined statistical model, there is conservation of variability.

e The holy grail: all scales of variation are additive

Seek a transformation of the scientific process where all components of
variation act and interact additively.

e Patches in close proximity are commonly more alike ...

Everything is related to everything else, but near things are more related
than distant things (Tobler 1970).
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Discussion: Bayesian hierarchical models

o Bayesian hierarchical models put focus on:

and allow including

e /\ Bayesian models often less scalable to very big datasets
(but frameworks such as R-INLA can handle millions of observations)

e Many implementation frameworks (BUGS, R-INLA, JAGS, Stan, TMB...)
and training opportunities
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Thanks for your attention!

Some relevant resources:

e RESSTE network (INRAE and beyond):
https://reseau-resste.mathnum.inrae.fr/

Risques, Extrémes et Statistique Spatio- TEmporelle
— Workshops, Tutorials, Mailing list

e R-INLA for Latent Gaussian Models: https://www.r-inla.org/


https://reseau-resste.mathnum.inrae.fr/
https://www.r-inla.org/

