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Wildfires in France..
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... and elsewhere
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Wildfires

• Wildfires represent a major environmental risk worldwide with strong
impacts on societies, ecosystems and climate change.

• Many statistical and machine-learning approaches have been deployed
to better understand and predict wildfires.

• There are two important aspects about wildfires:
• Occurrence (Where? When? How many?)
• Size (How extreme?)

• Extreme fires (such as those exceeding a high size threshold) contribute
very strongly to total burnt areas and must be modeled with great care.
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Explanatory variables for wildfire risk

• Weather and climate conditions ⇒ Vulnerability to wildfires

• Complex interactions among temperature, precipitation, humidity, wind

• Various weather-based fire-danger indices have been developed,
such as the Fire-Weather Index (FWI)

• Forests and other vegetation cover ⇒ Exposure

• Human-related factors: human behavior, and wildfire management and
prevention, are highly important but often difficult to assess quantitatively
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Wildfire data for Southeastern France
Prométhée database (since 1970s): for each wildfire,
• position (2km precision) and date of ignition, and
• burnt area (≈ 10000 wildfires larger than 1ha since 1995)
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Wildfire burnt areas

“1% of fires do 99% of the damage”

Left: Aggregated burnt areas per pixel (regular 8km grid)
Right: Histogram of individual wildfire sizes in km (diameters = 2
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Complex data...

• Multi-source data and multi-scale data
(e.g. in-situ, radar, satellite, reanalyses, regional/global climate models)

• Measurement errors,
Preferential sampling (e.g. Citizen Science data)

• “Small data“, especially for extreme events

• “Non-normal“ data: Discrete/Continuous; Asymmetries; Heavy tails

What you see is not what you want to get

Objectif: Transformation des données en connaissances
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... and complex processes to model

General setting: Regression modeling
⇒ Explain/predict one or several variables of interest (called response(s)) as a
function of other variables (called covariates/predictors/drivers/forcings)

• Assessment of the influence of natural and anthropogenic drivers

• Different spatial and temporal scales may be relevant

• Auto- and cross-correlations among drivers and responses

• An example of complex processes:

Risk modeling in the sense of IPCC/UNDRR: for a given “stake“,

Risk = Hazard(Drivers) × Vulnerability(Drivers) × Exposure(Drivers)
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...require sophisticated models

Desiderata for flexible model classes

• Numerous predictor variables and multiple response variables

• Non-normal probability distributions of the response

• Measurement errors

• Spatial and temporal autocorrelation

• Prior knowledge about processes

Using models for decision support

• Assess various sources of uncertainty:
• Intrinsic (natural) variability of phenomena
• Estimation of parameters
• Model choice

• Identify drivers and quantify how they contribute to the response

• Make probabilistic predictions and long-term projections

• Stochastically generate new scenarios
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Bayesian setting
We use prior distributions for unknown model parameters to be estimated.

Modeling approach

1 Formulate the model for data conditional to parameters.

2 Set prior distributions for parameters by including prior knowledge.

3 Infer parameters conditional to data using Bayes’ theorem.

Bayes’ theorem

Prior variables θ.
Data y .
Prior probability Pr(θ).
Likelihood Pr(y | θ)
⇒ Posterior probability

Pr(θ | y) =
Pr(y | θ)Pr(θ)

Pr(y)

∝ Pr(y | θ)Pr(θ)

• Mathematically simple.

• Computationally complex,
especially if θ has many
components.

B For fixed data y , the probability Pr(y) is a parameter-free constant.
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Illustration

Prior probability density ? Likelihood of data ; Posterior density

With few observations, the prior has strong influence on the posterior model.

Image credit: Balaji et al. (2013)
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The structure of Bayesian hierarchical models

Bayesian hierarchical models flexibly combine three structured layers:

data
↑

latent process
↑

hyperparameters

• Observation/data layer
defined by the likelihood model of observations

depends on

• Latent process capturing trends, dynamics and dependence,

depends on

• Hyperparameters controlling the latent process(es) and likelihood:

• Signal-to-noise ratio, smoothing ⇒ variance/correlation parameters
• Range of dependence, e.g., spatial range of correlation function
• Shape of the response distribution, e.g., gamma or GEV shape

Challenging estimation of numerous parameters
⇒ Approximate Bayesian inference
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Formal notation of Bayesian hierarchical models

A priori, we suppose that data y have been generated using a latent process
that can be represented through a random vector x .

Formal notation

Data: y = (y1, . . . , yn)
Latent random vector: x = (x1, . . . , xm)
Predictor: η = (η1, . . . , ηn) = g(x) with some projection function g

yi | x ,θ
ind.∼ π(yi | ηi ,θ), Likelihood of observations

x | θ ∼ π(x | θ) Latent process

θ ∼ π(θ) Hyperparameters

B π(·) is used generically for conditional/unconditional probability densities.
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Many variants of hierarchical models
Different processes / hierarchies / data sources.

Illustration (with slightly different notations):
variants involving a biological process, for example a mechanistic model for
population dynamics or disease spread

Image credit: Julien Papäıx
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The class of Latent Gaussian models (LGMs)
A popular class of models widely used for spatial and spatiotemporal data.

Latent Gaussian Models

• A priori, x is an m-dimensional multivariate Gaussian vector

x | θ ∼ Nm(µ,Σ(θ))

• Observation matrix (or projection matrix) A ∈ Rn×m defines a linear
predictor

η = (η1, . . . , ηn) = η(x) = Ax

(Observation matrix A is known and fixed in the model)

• A priori, the linear predictor η is also multivariate Gaussian:

η ∼ Nn(Aµ,AΣ(θ)AT )

⇒ Flexible models and fast estimation with relatively large n and m
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Recall: Gaussian vectors and fields

Gaussian distributions are characterized by their mean vector and covariance
matrix:

x = (x1, . . . , xm) ∼ N (µ,Σ), µ =

µ1

...
µm

 , Σ =


σ11 . . . σmm

σ21 . . . σ2m

...
...

...
σm1 . . . σmm



Gaussian fields x(s) for locations s: characterized by a mean function µ(s)
and a covariance function C(s1, s2) = Cov(x(s1), x(s2))

Small range Large range Smooth surface Anisotropy
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Toy example: Bayesian linear model (two covariates)
How to cast the classical linear model in the latent Gaussian framework?

yi = β0 + β1v1,i + β2v2,i + εi , εi
ind.∼ N (0, σ2

ε)

• We have yi | (x ,θ) ∼ N (ηi (x), σ2
ε)

with linear predictor ηi (x) = β0 + β1v1i + β2v2i and A =

1 v11 v21

...
...

...
1 v1n v2n


• Latent Gaussian x = (β0, β1, β2) with prior

x ∼ N (0,Σ), Σ =

σ2
0 0 0

0 σ2
β 0

0 0 σ2
β


• Gaussian likelihood in the data layer:

π(yi | ηi (x), σ2
ε) =

1√
2πσ2

ε

exp

(
1

2

(yi − ηi (x))2

σ2
ε

)

• Hyperparameters θ = (σ2
ε, σ

2
0 , σ

2
β)
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Example of an LGM: Poisson–lognormal model

• Models for count data ⇒ Poisson likelihood:

yi | λi ∼ Poisson(λi ), i = 1, . . . , n

(note: there are no hyperparameters in the Poisson distribution)

• Poisson intensity parameters are assumed to follow the log-Gaussian
distribution:

η = logλ = (log λ1, . . . , log λn)T = Ax ∼ N (µ,AΣAT )

with µ = (µ1, . . . , µn)T and Σ the m ×m variance-covariance matrix.

• Here, we use a log-link function between the linear predictors η and the
likelihood parameters λ.
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Example: Firelihood model for wildfire counts

• Observations: wildfire counts yi in voxel i (pixel-days with 8km × 8km
pixels)

• Data likelihood:
yi | λi ∼ Poisson(λi )

• Linear predictor:

ηi = log λi =β0 + fFWI(FWIi ) + fFA(FAi ) + fDOY(DOYi )

+ fYEAR(YEARi) + fPIXEL(PIXELi ),

with nonlinear additive components (using basis functions aCOMP
k )

fCOMP(COMPi ) =

KCOMP∑
k=1

βCOMP
k aCOMP

k (COMPi ),

where the observation matrix A has entries aCOMP
k (COMPi ) in row i .

• Latent Gaussian vector:

x = (β0,β
FWI,βFA,βDOY,βYEAR,βPIXEL).
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Example: representation of fPIXEL(PIXELi )
A priori, fPIXEL is a Gaussian 2D random field.

SPDE approach (Lindgren et al. (2011); Krainski et al. (2018))

1 We discretize geographic space using a triangulation with mPIXEL nodes.

2 On each node sk , we put a Gaussian variable xk .

3 Latent Gaussian vector x = (x1, . . . , xmPIXEL) with Matérn covariance Σ.

4 Basis functions aPIXEL
k are finite elements (“pyramids“).

⇒ Sparse precision matrices Q = Σ−1 allow working with large m

Spatial mesh Finite-element representation
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Estimating Bayesian hierarchical models

B Usually we cannot calculate the posterior estimations in closed form:

• Posterior densities π(θj | y), π(xk | y), π(ηi | y)

• Posterior mean estimates E(θj | y), E(xk | y), E(h(ηi ) | y)

B Latent Gaussian vector x is often very high-dimensional (up to m ≈ 105)

⇒ Use numerical approximation of complicated integrals, such as

π(θj | y) =

∫ ∫
π(θ, x | y) dxdθ−j

• Markov-Chain Monte-Carlo: simulate from posterior density π(θ, x | y)

• Integrated Nested Laplace Approximation: astute numerical
integration for Latent Gaussian Models (Rue et al. 2009)

• dx : variants of Laplace approximation

• dθ: variants of classical numerical integration
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Simulation-based posterior inferences

Monte–Carlo estimation of posterior quantities based on a large sample of the
estimated posterior model ⇒ Accurate propagation of posterior incertainties.

Illustration : (here for a model fitted to landslides)

Intercept Coe�cients of Linear Covariates Coe�cients of Nonlinear Covariates

Categorical or iid Ordinal or RW1

Bayesian Generalized Additive Model

µ

Etc.

M
od

el
 F

itt
in

g
Po

st
er

io
r S

am
pl

es

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0
β0 βSlope βPGA2017µ

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0

Sa
m

pl
e1

Sa
m

pl
e2

Sa
m

pl
e3

Sa
m

pl
e1

00
0

βClass1

βClass2

βClass3

βClass...m

β   0 Samples = µβSlope Slope    + µ+ µβPGA2017 PGA2017    + f(X           ) µ Class...m

Loop for 1 to 1000
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Case study: Bioeconomic projections of wildfire risk

Soft-coupling of three models:

• Climate model ⇒ Deterministic simulations EURO-CORDEX

• Statistical wildfire model ⇒ Bayesian hierarchical model Firelihood

• Economic forest sector model ⇒ Deterministic model FFSM
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Firelihood model for wildfire occurrences and sizes

• A system of latent Gaussian models for several response variables

• Our model combines several regression equations :

• Wildfire counts per pixel-day (Poisson)

• Size exceedance above thresholds 10, 100, 1000ha (Bernoulli)

• Sizes in the intervals [1, 10], [10, 100], [100, 1000]ha (truncated Pareto)

• Extreme sizes exceeding 1000ha (Generalized Pareto Distribution)

• Each regression equation has a linear predictor with form

ηi =β0 + fFWI(FWIi ) + fFA(FAi )+

+ fYEAR(YEARi) + fDOY(DOYi ) + fPIXEL(PIXELi )

(some components may be left out)
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Estimated predictor components
Pimont et al. (2021, Ecological Applications).

Model was fitted to main fire season (June–September)

Posterior effects of Fire-Weather Index, Forest Area, Seasonal, Spatial

Spatial/seasonal effects account for strong residual variability not explained
by biophysical predictors.
Tail index of ξ̂ ≈ 0.4 of extreme fire sizes confirms very heavy tails.
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Model-based predictions of fire numbers and sizes

We perform posterior simulation and aggregate results, here to annual scale.

Boxplots of posterior samples (dark grey = validation period 2015–2018)

vs.

Observations (red lines)
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Bioeconomic projections for the forest sector (–2100)
Riviere et al. (2022, Earth’s Future).

• For coniferous forests
• Climate scenarios : RCPs 4.5 et 8.5
• Climate projections EURO-CORDEX : 5 pairs GCM-RCM
• 30 simulations of Firelihood posterior per triplet scenario-GCM-RCM

Trend and uncertainty (top row) ; decomposition of variance (bottom row)
Burnt areas (left); ∆ Harvested timber (middle); ∆ Earnings (right)
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Discussion: Good statistical practices

Noël Cressie (2021). A few statistical principles for data science. Australian &
New Zealand Journal of Statistics.

• Geophysicists conserve energy but what do data scientists conserve?

In any well-defined statistical model, there is conservation of variability.

• The holy grail: all scales of variation are additive

Seek a transformation of the scientific process where all components of
variation act and interact additively.

• Patches in close proximity are commonly more alike ...

Everything is related to everything else, but near things are more related
than distant things (Tobler 1970).
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Discussion: Bayesian hierarchical models

• Bayesian hierarchical models put focus on:

• Parameter inference

• Uncertainty assessment

• Interpretability

and allow including prior (expert) knowledge

• B Bayesian models often less scalable to very big datasets
(but frameworks such as R-INLA can handle millions of observations)

• Many implementation frameworks (BUGS, R-INLA, JAGS, Stan, TMB...)
and training opportunities
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Thanks for your attention!

Some relevant resources:

• RESSTE network (INRAE and beyond):
https://reseau-resste.mathnum.inrae.fr/

Risques, Extrêmes et Statistique Spatio-TEmporelle

→ Workshops, Tutorials, Mailing list

• R-INLA for Latent Gaussian Models: https://www.r-inla.org/
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