Une introduction aux modèles bayésiens hiérarchiques – avec une application aux feux de forêts en France –

Thomas Opitz

BioSP, INRAE, Avignon

École TDMA 2023

Grenoble 8 juin 2023

Wildfires in France..

Accueil > Actu > Environnement > Incendies

Méga-feu en Gironde et dans les Landes: 1.000 pompiers mobilisés dont un très grièvement blessé et 10.000 évacués face à un incendie hors de contrôle

... and elsewhere

Superficie brûlée en 2023

Provinces les plus touchées par les feux de forêt En date du 6 juin 2023

	V
Alberta	1 192 489 ha
Saskatchewan	976 439 ha
Territoires du Nord-Ouest	383 277 ha
Colombie-Britannique	344 767 ha
Québec	327 521 ha
Ontario	31 853 ha
Nouvelle-Écosse	26 655 ha

Source: Ressources naturelles Canada, Saskatchewan Public Safety Agency, 🍈 RaDIO-CanaDa

Wildfires

- Wildfires represent a major environmental risk worldwide with strong impacts on societies, ecosystems and climate change.
- Many statistical and machine-learning approaches have been deployed to better understand and predict wildfires.
- There are two important aspects about wildfires:
 - Occurrence (Where? When? How many?)
 - Size (How extreme?)
- Extreme fires (such as those exceeding a high size threshold) contribute very strongly to total burnt areas and must be modeled with great care.

Explanatory variables for wildfire risk

- Weather and climate conditions ⇒ Vulnerability to wildfires
 - Complex interactions among temperature, precipitation, humidity, wind
 - Various weather-based fire-danger indices have been developed, such as the Fire-Weather Index (FWI)
- Forests and other vegetation cover ⇒ Exposure

• Human-related factors: human behavior, and wildfire management and prevention, are highly important but often difficult to assess quantitatively

Wildfire data for Southeastern France

Prométhée database (since 1970s): for each wildfire,

- position (2km precision) and date of ignition, and
- burnt area (\approx 10000 wildfires larger than 1ha since 1995)

Wildfire burnt areas

"1% of fires do 99% of the damage"

Left: Aggregated burnt areas per pixel (regular 8km grid) Right: Histogram of individual wildfire sizes in km (diameters $=\frac{2}{\pi}\sqrt{\text{surface}}$)

Complex data...

- Multi-source data and multi-scale data (e.g. in-situ, radar, satellite, reanalyses, regional/global climate models)
- Measurement errors, Preferential sampling (e.g. Citizen Science data)
- "Small data", especially for extreme events
- "Non-normal" data: Discrete/Continuous; Asymmetries; Heavy tails

What you see is not what you want to get

Objectif: Transformation des données en connaissances

\ldots and complex processes to model

General setting: Regression modeling

 \Rightarrow Explain/predict one or several variables of interest (called response(s)) as a function of other variables (called covariates/predictors/drivers/forcings)

- Assessment of the influence of natural and anthropogenic drivers
- Different spatial and temporal scales may be relevant
- Auto- and cross-correlations among drivers and responses
- An example of complex processes:

Risk modeling in the sense of IPCC/UNDRR: for a given "stake",

Risk = **Hazard**(Drivers) × **Vulnerability**(Drivers) × **Exposure**(Drivers)

...require sophisticated models

Desiderata for flexible model classes

- Numerous predictor variables and multiple response variables
- Non-normal probability distributions of the response
- Measurement errors
- Spatial and temporal autocorrelation
- Prior knowledge about processes

Using models for decision support

- Assess various sources of uncertainty:
 - Intrinsic (natural) variability of phenomena
 - Estimation of parameters
 - Model choice
- Identify drivers and quantify how they contribute to the response
- Make probabilistic predictions and long-term projections
- Stochastically generate new scenarios

Bayesian setting

We use prior distributions for unknown model parameters to be estimated.

Modeling approach

- **1** Formulate the model for data conditional to parameters.
- **2** Set prior distributions for parameters by including prior knowledge.
- **③** Infer parameters conditional to data using Bayes' theorem.

Bayes' theorem

Prior variables $\boldsymbol{\theta}$. Data \boldsymbol{y} . Prior probability $Pr(\boldsymbol{\theta})$. Likelihood $Pr(\boldsymbol{y} \mid \boldsymbol{\theta})$ \Rightarrow Posterior probability $Pr(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{Pr(\boldsymbol{y} \mid \boldsymbol{\theta})Pr(\boldsymbol{\theta})}{Pr(\boldsymbol{y})}$ $\propto Pr(\boldsymbol{y} \mid \boldsymbol{\theta})Pr(\boldsymbol{\theta})$

- Mathematically simple.
- Computationally complex, especially if θ has many components.

 $\underline{\wedge}$ For fixed data y, the probability $\Pr(y)$ is a parameter-free constant.

Prior probability density \star Likelihood of data \rightsquigarrow Posterior density

With few observations, the prior has strong influence on the posterior model.

Image credit: Balaji et al. (2013)

The structure of Bayesian hierarchical models

Bayesian hierarchical models flexibly combine three structured layers:

- Observation/data layer defined by the likelihood model of observations depends on
- Latent process capturing trends, dynamics and dependence, depends on
- Hyperparameters controlling the latent process(es) and likelihood:
 - Signal-to-noise ratio, smoothing \Rightarrow variance/correlation parameters
 - Range of dependence, e.g., spatial range of correlation function
 - Shape of the response distribution, e.g., gamma or GEV shape

Challenging estimation of numerous parameters ⇒ Approximate Bayesian inference

Formal notation of Bayesian hierarchical models

A priori, we suppose that data y have been generated using a latent process that can be represented through a random vector x.

Formal notation

Data: $y = (y_1, ..., y_n)$ **Latent random vector:** $x = (x_1, ..., x_m)$ **Predictor:** $\eta = (\eta_1, ..., \eta_n) = g(x)$ with some projection function g

Likelihood of observation	$y_i \mid \boldsymbol{x}, \boldsymbol{ heta} \stackrel{\textit{ind.}}{\sim} \pi(y_i \mid \eta_i, \boldsymbol{ heta}),$
Latent proces	$oldsymbol{x} \mid oldsymbol{ heta} \sim \pi(oldsymbol{x} \mid oldsymbol{ heta})$
Hyperparameter	$oldsymbol{ heta} \sim \pi(oldsymbol{ heta})$

 $\wedge \pi(\cdot)$ is used generically for conditional/unconditional probability densities.

Many variants of hierarchical models

Different processes / hierarchies / data sources.

Illustration (with slightly different notations):

variants involving a biological process, for example a mechanistic model for population dynamics or disease spread

15/31

The class of Latent Gaussian models (LGMs)

A popular class of models widely used for spatial and spatiotemporal data.

Latent Gaussian Models

• A priori, x is an m-dimensional multivariate Gaussian vector

$$\mathbf{x} \mid \boldsymbol{\theta} \sim \mathcal{N}_m(\boldsymbol{\mu}, \boldsymbol{\Sigma}(\boldsymbol{\theta}))$$

• Observation matrix (or projection matrix) $A \in \mathbb{R}^{n \times m}$ defines a linear predictor

$$\boldsymbol{\eta} = (\eta_1, \ldots, \eta_n) = \boldsymbol{\eta}(\boldsymbol{x}) = A\boldsymbol{x}$$

(Observation matrix A is known and fixed in the model)

• A priori, the linear predictor η is also multivariate Gaussian:

$$\boldsymbol{\eta} \sim \mathcal{N}_n(A\boldsymbol{\mu}, A\boldsymbol{\Sigma}(\boldsymbol{\theta})A^{\mathsf{T}})$$

 \Rightarrow Flexible models and fast estimation with relatively large n and m

Recall: Gaussian vectors and fields

Gaussian distributions are characterized by their mean vector and covariance matrix:

$$\mathbf{x} = (x_1, \ldots, x_m) \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \boldsymbol{\mu} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix}, \quad \boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \ldots & \sigma_{mm} \\ \sigma_{21} & \ldots & \sigma_{2m} \\ \vdots & \vdots & \vdots \\ \sigma_{m1} & \ldots & \sigma_{mm} \end{pmatrix}$$

Gaussian fields x(s) for locations s: characterized by a mean function $\mu(s)$ and a covariance function $C(s_1, s_2) = Cov(x(s_1), x(s_2))$

Toy example: Bayesian linear model (two covariates) How to cast the classical linear model in the latent Gaussian framework?

$$y_i = \beta_0 + \beta_1 v_{1,i} + \beta_2 v_{2,i} + \varepsilon_i, \quad \varepsilon_i \stackrel{\text{ind.}}{\sim} \mathcal{N}(0, \sigma_{\varepsilon}^2)$$

• We have
$$y_i \mid (\mathbf{x}, \boldsymbol{\theta}) \sim \mathcal{N}(\eta_i(\mathbf{x}), \sigma_{\varepsilon}^2)$$

with linear predictor $\eta_i(\mathbf{x}) = \beta_0 + \beta_1 v_{1i} + \beta_2 v_{2i}$ and $A = \begin{pmatrix} 1 & v_{11} & v_{21} \\ \vdots & \vdots & \vdots \\ 1 & v_{1n} & v_{2n} \end{pmatrix}$

• Latent Gaussian $\pmb{x}=(\beta_0,\beta_1,\beta_2)$ with prior

$$oldsymbol{x} \sim \mathcal{N}(oldsymbol{0}, oldsymbol{\Sigma}), \quad oldsymbol{\Sigma} = egin{pmatrix} \sigma_0^2 & 0 \ 0 & \sigma_eta^2 & 0 \ 0 & 0 & \sigma_eta^2 \end{pmatrix}$$

Gaussian likelihood in the data layer:

$$\pi(y_i \mid \eta_i(\mathbf{x}), \sigma_{\varepsilon}^2) = \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \exp\left(\frac{1}{2} \frac{(y_i - \eta_i(\mathbf{x}))^2}{\sigma_{\varepsilon}^2}\right)$$

• Hyperparameters $oldsymbol{ heta}=(\sigma_{arepsilon}^2,\sigma_0^2,\sigma_{eta}^2)$

18/31

Example of an LGM: Poisson-lognormal model

Models for count data ⇒ Poisson likelihood:

$$y_i \mid \lambda_i \sim \text{Poisson}(\lambda_i), \quad i = 1, \dots, n$$

(note: there are no hyperparameters in the Poisson distribution)

• Poisson intensity parameters are assumed to follow the log-Gaussian distribution:

$$\boldsymbol{\eta} = \log \boldsymbol{\lambda} = (\log \lambda_1, \dots, \log \lambda_n)^T = A \boldsymbol{x} \sim \mathcal{N}(\boldsymbol{\mu}, A \boldsymbol{\Sigma} A^T)$$

with $\boldsymbol{\mu} = (\mu_1, \dots, \mu_n)^T$ and $\boldsymbol{\Sigma}$ the $m \times m$ variance-covariance matrix.

• Here, we use a log-link function between the linear predictors η and the likelihood parameters λ .

Example: Firelihood model for wildfire counts

- **Observations:** wildfire counts y_i in voxel *i* (pixel-days with $8km \times 8km$ pixels)
- Data likelihood:

$$y_i \mid \lambda_i \sim \text{Poisson}(\lambda_i)$$

• Linear predictor:

$$\begin{aligned} \eta_i &= \log \lambda_i = \beta_0 + f_{\rm FWI}({\rm FWI}_i) + f_{\rm FA}({\rm FA}_i) + f_{\rm DOY}({\rm DOY}_i) \\ &+ f_{\rm YEAR}({\rm YEAR}_i) + f_{\rm PIXEL}({\rm PIXEL}_i), \end{aligned}$$

with nonlinear additive components (using basis functions a_k^{COMP})

$$f_{\text{COMP}}(\text{COMP}_i) = \sum_{k=1}^{K_{\text{COMP}}} \beta_k^{\text{COMP}} a_k^{\text{COMP}}(\text{COMP}_i),$$

where the observation matrix A has entries $a_k^{\text{COMP}}(\text{COMP}_i)$ in row *i*.

• Latent Gaussian vector:

$$\boldsymbol{x} = (\beta_0, \boldsymbol{\beta}^{\mathrm{FWI}}, \boldsymbol{\beta}^{\mathrm{FA}}, \boldsymbol{\beta}^{\mathrm{DOY}}, \boldsymbol{\beta}^{\mathrm{YEAR}}, \boldsymbol{\beta}^{\mathrm{PIXEL}}).$$

Example: representation of $f_{PIXEL}(PIXEL_i)$

A priori, $f_{\rm PIXEL}$ is a Gaussian 2D random field.

SPDE approach (Lindgren et al. (2011); Krainski et al. (2018))

- **()** We discretize geographic space using a triangulation with m_{PIXEL} nodes.
- **2** On each node s_k , we put a Gaussian variable x_k .
- **3** Latent Gaussian vector $\mathbf{x} = (x_1, \dots, x_{m_{\text{PIXEL}}})$ with Matérn covariance Σ .
- **4** Basis functions a_k^{PIXEL} are finite elements ("pyramids").
- \Rightarrow Sparse precision matrices $Q = \Sigma^{-1}$ allow working with large m

Estimating Bayesian hierarchical models

▲ Usually we cannot calculate the **posterior estimations** in closed form:

- Posterior densities $\pi(\theta_j \mid \mathbf{y}), \pi(\mathbf{x}_k \mid \mathbf{y}), \pi(\eta_i \mid \mathbf{y})$
- Posterior mean estimates $\mathbb{E}(\theta_j \mid \mathbf{y})$, $\mathbb{E}(x_k \mid \mathbf{y})$, $\mathbb{E}(h(\eta_i) \mid \mathbf{y})$

 \wedge Latent Gaussian vector x is often very high-dimensional (up to $m \approx 10^5$)

 \Rightarrow Use numerical approximation of complicated integrals, such as

$$\pi(\theta_j \mid \mathbf{y}) = \int \int \pi(\boldsymbol{\theta}, \mathbf{x} \mid \mathbf{y}) \, \mathrm{d}\mathbf{x} \mathrm{d}\boldsymbol{\theta}_{-j}$$

- Markov-Chain Monte-Carlo: simulate from posterior density $\pi(\theta, \mathbf{x} \mid \mathbf{y})$
- Integrated Nested Laplace Approximation: astute numerical integration for Latent Gaussian Models (Rue et al. 2009)
 - dx: variants of Laplace approximation
 - $d\theta$: variants of classical numerical integration

Simulation-based posterior inferences

Monte–Carlo estimation of posterior quantities based on a large sample of the estimated posterior model \Rightarrow Accurate propagation of posterior incertainties.

Illustration : (here for a model fitted to landslides)

Case study: Bioeconomic projections of wildfire risk

Soft-coupling of three models:

- Climate model \Rightarrow Deterministic simulations EURO-CORDEX
- Statistical wildfire model \Rightarrow Bayesian hierarchical model Firelihood
- Economic forest sector model \Rightarrow Deterministic model FFSM

Firelihood model for wildfire occurrences and sizes

- A system of latent Gaussian models for several response variables
- Our model combines several regression equations :
 - Wildfire counts per pixel-day (Poisson)
 - Size exceedance above thresholds 10, 100, 1000ha (Bernoulli)
 - Sizes in the intervals [1, 10], [10, 100], [100, 1000] ha (truncated Pareto)
 - Extreme sizes exceeding 1000ha (Generalized Pareto Distribution)
- · Each regression equation has a linear predictor with form

 $\eta_i = \beta_0 + f_{\text{FWI}}(\text{FWI}_i) + f_{\text{FA}}(\text{FA}_i) + f_{\text{YEAR}}(\text{YEAR}_i) + f_{\text{DOY}}(\text{DOY}_i) + f_{\text{PIXEL}}(\text{PIXEL}_i)$

(some components may be left out)

Estimated predictor components

Pimont et al. (2021, Ecological Applications).

Model was fitted to main fire season (June-September)

Posterior effects of Fire-Weather Index, Forest Area, Seasonal, Spatial

Spatial/seasonal effects account for strong residual variability not explained by biophysical predictors.

Tail index of $\hat{\xi}pprox$ 0.4 of extreme fire sizes confirms very heavy tails. , where $\hat{\xi}$ is $\hat{\xi}$

Model-based predictions of fire numbers and sizes

We perform posterior simulation and aggregate results, here to annual scale. Boxplots of posterior samples (dark grey = validation period 2015-2018) vs.

Observations (red lines)

Bioeconomic projections for the forest sector (-2100)

Riviere et al. (2022, Earth's Future).

- For coniferous forests
- Climate scenarios : RCPs 4.5 et 8.5
- Climate projections EURO-CORDEX : 5 pairs GCM-RCM
- 30 simulations of Firelihood posterior per triplet scenario-GCM-RCM

Trend and uncertainty (top row) ; decomposition of variance (bottom row) Burnt areas (left); \triangle Harvested timber (middle); \triangle Earnings (right)

Discussion: Good statistical practices

Noël Cressie (2021). A few statistical principles for data science. Australian & New Zealand Journal of Statistics.

- Geophysicists conserve energy but what do data scientists conserve? In any well-defined statistical model, there is conservation of variability.
- The holy grail: all scales of variation are additive

Seek a transformation of the scientific process where all components of variation act and interact additively.

• Patches in close proximity are commonly more alike ...

Everything is related to everything else, but near things are more related than distant things (Tobler 1970).

Discussion: Bayesian hierarchical models

- Bayesian hierarchical models put focus on:
 - Parameter inference
 - Uncertainty assessment
 - Interpretability

and allow including prior (expert) knowledge

- A Bayesian models often less scalable to very big datasets (but frameworks such as R-INLA can handle millions of observations)
- Many implementation frameworks (BUGS, R-INLA, JAGS, Stan, TMB...) and training opportunities

Thanks for your attention!

Some relevant resources:

- RESSTE network (INRAE and beyond): https://reseau-resste.mathnum.inrae.fr/ *Risques, Extrêmes et Statistique Spatio-TEmporelle* → Workshops, Tutorials, Mailing list
- R-INLA for Latent Gaussian Models: https://www.r-inla.org/