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Climate change and extreme events
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Extreme events are located in space (s) and time (t) ...

s =“Montpellier (FR)”, t=“30 September 2014”
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... and they could be dependent.

s =“Venice (IT)”, t=“8 November 2014”
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Outline of the talk

1 "Classical" extreme value models

2 Which spatial analysis for extremes ?

3 Asymptotic models for spatial extremes

4 Subasymptotic models for spatial extremes
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"My" data...
Venice (IT), 12 November 2019

↪→ one variable . . . a single site . . .
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Extrapolation
Daily tide levels in Venice 

 (1872−2019)
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▶ Can a standard statistical model help ?
▶ Guess the p-quantile or return level with a return period of

T = 1/p (years) i.e. value that Y overcomes with "small" 0 < p < 1
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“Ordinary” vs "Extreme value" statistics

▶ "Ordinary" statistics: Tries to describe main part of distribution;
may ignore outliers.

▶ "Extreme value" statistics. Tries to characterize the tail of the
distribution; keeps only the extreme observations.

▶ Fits asymptotically-justified distributions to characterize the tail.
▶ Uses only a subset of the data considered to be extreme.

GEV - models block maxima
GPD - models threshold exceedances

▶ Dependence described differently not via covariances or correlations,
but looking at the tail.

▶ Spatial process are not Gaussian...
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Example: Australian rainfall data

▶ Daily rainfall data from 33 stations in the East of Australia
(1841-2013) (web source)
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Lavery, B., Joung, G. and Nicholls, N. (1997). Australian Meteorological
Magazine, 46, 27-38.
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Australian rainfall data: one station

CAMBOOYA POST OFFICE 
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Australian rainfall data: one station distribution
CAMBOOYA POST OFFICE 
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Classical extreme value models

Coles, S. (2001) An Introduction to Statistical Modeling of Extreme
Values , Springer
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Block maxima
Focus on the annual maxima (block maxima)
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Principles of stability

Fundamental to all characterizations of extreme value processes is the
concept of stability.
▶ For example, we might propose one model for the annual maximum of

a process, and another for the 5-year maximum. Since the 5-year
maximum will be the maximum of 5 annual maxima, the models
should be mutually consistent.

▶ Similarly, a model for exceedances over a high threshold should
remain valid (in a precise sense) for exceedances of higher threshold.

▶ The expression of such stability requirements as mathematical
statements leads to asymptotic models.
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The Gaussian world...

▶ Gaussianity is a common assumption in statistical modeling
▶ Asymptotic justification: Central Limit Theorem
▶ sums Sn = Y1 + . . .+ Yn,

Sn − nµ
σ

√
n =

Sn − bn

an
≈ Z ∼ N (0, 1)

for large n

15/ 78



Annual rainfall (sums)

CAMBOOYA POST OFFICE 

mm

D
en

si
ty

0 50 100 150

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

CAMBOOYA POST OFFICE 

mm

D
en

si
ty

200 400 600 800 1000 1200

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20
0.

00
25

Y Total amount of rain
over one year.

16/ 78



Annual rainfall (maxima)
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▶ A symmetric distribution cannot adequately model the maxima
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Model for block maxima
▶ Y1,Y2, . . . sequence of independent random variables with common

distribution F
▶ Maxima Mn = max(Y1, . . . ,Yn)
▶ If there exist sequences of constants an > 0 and bn ∈ R such that,

Mn − bn

an
≈ Z ∼ G

for large n then the distribution G is necessarily of the form

Generalized Extreme Value (GEV) distribution

G(z) =
{

exp
[
− {1 + ξ(z − µ)/σ}−1/ξ

+

]
, ξ ̸= 0

exp [− exp {−(z − µ)/σ}] , ξ = 0

▶ µ ∈ R (location), σ > 0 (scale) and ξ ∈ R (shape), where
a+ = max(0, a)

▶ support {z ∈ R : 1 + ξ(z − µ)/σ > 0}
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GEV: different shape parameters

GEV density Return level plot
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Annual rainfall (maxima): fitted model
µ̂ = 53.84 (1.86), σ̂ = 18.48 (1.41), ξ̂ = 0.12 (0.07), n = 127
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Block maxima: pros/cons

▶ Convention is to work with blocks equal in length to the calendar
year, but what if you have hourly data collected over just a few years?

▶ Block length too small -limiting arguments will not hold (the GEV is
a limiting result, which holds approximately for large n)

▶ Block length is too large - not enough maxima to work with!
▶ Possible sensitivity of GEV parameter estimates to block length
▶ Extremely wasteful of data:

Discard all but the block maxima
Often results in throwing away tens of thousands of observations some
of which might be ’extreme’ just not as extreme as the block maxima!
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Peak Over Threshold (POT) analysis
Focus on the exceedances over a large threshold.
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Model for threshold exceedances

Under the same condition for GEV, the conditional distribution of high
threshold exceedances

Y − u|Y > u

may be approximated

Y − u|Y > u ≈ Z ∼ H

for large u. The distribution H is necessarily of the form

Generalized Pareto (GP) distribution

H(z) =
{

1 − (1 + ξz/τ)−1/ξ
+ , ξ ̸= 0

1 − exp(−y/τ), ξ = 0
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GPD: different shape parameters
GPD density
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Exceedances: fitted model
τ̂ = 13.825 (0.6087), ξ̂ = 0.11 (0.03), u = q0.975, n = 1105
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Why GPD model ?

= The shape parameters ξ in GEV and GP are equal
= The scale parameters σ and τ are related

τ ≈ σ + ξ(u − µ)

+ Estimation (inference) with more data
+/- Which threshold u ?
+/- In a cluster of exceedances data are temporally dependent.

+ Model for a real event
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Which spatial analysis for extremes ?
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Possible goals of extremal spatial analysis

▶ Pointwise maps of quantiles (return levels) - minimal information
about extremes

▶ Long-run prediction of events, for insurance/planning, e.g. floods -
need to take account of spatial dependence

▶ Short-range forecasting, e.g. avalanches, forest fires - need to include
real-time information

▶ Simulation of events for input to other models, e.g. hydrological
models for runoff in mountain valleys after extreme storms
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Spatial setting

▶ In the spatial setting, assume that {Y1(s)}, {Y2(s)}, . . . denotes a
sequence of independent random processes defined over the region
S ∈ Rd

▶ Observations at a finite collection of sites s1, . . . , sD.
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▶ Extreme events are sparse by definition
▶ We look at a single model that links the data at the different sites

together.
▶ Spatial scale matters...
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Spatially varying marginals (Spatial trends)

▶ The parameters of the marginal models depends on spatially-varying
covariates (altitude, etc.).

▶ In practice, the tail index ξ(s) can usually be assumed to be constant
(or to vary smoothly) over an entire spatial region

Example:

Mn(s) ∼ GEV (y ;µ(s), σ(s), ξ(s))

µ(s) = hµ(long(s), lat(s))
log(σ(s)) = hσ(long(s), lat(s))

ξ(s) = γ0
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Australian rainfall data: spatial model fitting (1940-2013)
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Australian rainfall: simulations of maxima
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▶ Model definition implies independence among the sites !
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Hierarchical modeling I

▶ see Opitz’s talk
▶ Bayesian framework

Example :

Stage I: Y (s)|θ(s) ∼ GEV (y ;µ(s), σ(s), ξ), θ(s) = (µ(s), log σ(s))

Stage II: µ(s) ∼ GP(u(s)′α,Kµ(s, s ′;ψ1)),

log σ(s) ∼ GP(v(s)′β,Kσ(s, s ′;ψ2))

Stage III: Prior on α, β, σ, ξ, and ψ = (ψ1, ψ2)

▶ Conditional on latent process θ(s), observations Y (s), for s ∈ S
follow an extremal distribution
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Hierarchical modeling II

Properties:
+ computationally feasible for large-scale problems using standard

simulation techniques (Metropolis-Hastings algorithm, Gibbs
sampling, . . .)

+ possibility of estimating quantiles spatially
- all extremal dependencies are incorporated through θ(s)
- marginal distributions are not extremal
- episodic modelling/simulation difficult
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Gaussian anamorphosis

▶ Remove spatial and temporal trend by fitting GEV (on maxima) or
GP (on exceedances)

▶ Use this fit to transform data to "Gaussian" data (probability integral
transformation)

▶ Apply standard geostatistics (see Ribatet’s course)
▶ Back-transformation to original data

Properties:
+ Easy using (R) software (SpatialExtremes, evgam)
+ Gaussianity not essential (could be uniform, or t )
- Distribution of joint extremes may be badly modelled because of

properties of Gaussian model
+/- equivalent to use of (extremal) copula
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Measuring the spatial dependence of extremes

▶ When dealing with spatial extremes, the correlation is no longer useful
since the variance (and even the mean) might not even exist.

extremal coefficient function, θ(h)
.

Pr (M(s) ≤ z ,M(s + h) ≤ z) = Pr(M(s) ≤ z)θ(h),

▶ The latter is a measure of the spatial dependence

1 ≤ θ(h) ≤ 2,
since

θ(h) = 1: complete dependence
θ(h) = 2: independence
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F-madogram

▶ In (conventional) geostatistics the semi-variogram is widely used

γ(h) = 1
2E(Y (s + h) − Y (s))2

▶ The F -madogram (Cooley et al., 2006)

νF (h) = 1
2E|F{M(s + h)} − F{(M(s)}|

satisfies
0 ≤ νF (h) = θ(h) − 1

θ(h) + 1 ≤ 1/3.
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Australian rainfall: measures of the spatial dependence of
extremes

0 2 4 6 8 10 12 14

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

h

θ(
h)

0 2 4 6 8 10 12 14
0.

10
0.

12
0.

14
0.

16
0.

18
0.

20

h

ν F
(h

)

38/ 78



Asymptotic models for spatial extremes

A. C. Davison, A.C., Padoan, S.A. and M. Ribatet, M. (2012) Statistical
modeling of spatial extremes, Statistical Science, 27, 161-186

Ferreira, A., and de Haan, L. (2014). The generalized Pareto process; with
a view towards application and simulation. Bernoulli, 20, 1717–1737.
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Max-stable process I

▶ Max-stable process: infinite-dimensional generalization of GEV
definition

maxi=1,...,n Yi(s) − bn(s)
an(s) = Mn(s) − bn(s)

an(s) , s ∈ S
Y(

s)

s
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Max-stable process II

Let {Y (s)}s∈S be a stochastic process with continuous sample paths,
Y1,Y2, . . . independent copies of it and define Mn(s) = maxi=1,...,n Yi(s).
If {Mn(s) − bn(s)

an(s)

}
s∈S

D−→ {M(s)}s∈S , n → ∞,

and {M(s)} is assumed to be non degenerate, then {M(s)} is max-stable
process
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Max-stable process: definition

A stochastic process M(s), s ∈ S is max-stable if there exist real functions
an(·) > 0 and bn(·) such that

max1≤i≤n Zi(s) − bn(s)
an(s) = M(s), s ∈ S

where Z1(·), . . . ,Zn(·) are independent copies of M(·).
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Model definition

▶ Pre-transforming marginal distributions simplifies the theory
▶ Common choice is unit Fréchet distribution
▶ i.e. GEV µ = 0, σ = 1, ξ = 1

Pr{Z ≤ z} = exp(−1/z), z > 0

▶ Models are mainly defined on this scale therefore we need to
transform the data Mn(s) = maxi=1,...,n Yi(s)

Mn(s) −→ M̃n(s) = − 1
log Fs(Mn(s))

▶ !△ ... we pretend to know the marginal the marginal GEV Fs .
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Spectral representation (de Haan, 1984)

Let {M(s)}s∈Rd be a max-stable process (unit Fréchet margins)

M(s) = sup
i≥1

RiWi(s), s ∈ S

where R1,R2, . . . points on a Poisson point process on [0,∞] with
intensity r−2dr , and W1(s),W2(s), . . . be independent copies of a
non-negative stochastic process with mean one,

▶ Suggests simulation algorithms for M(s)
▶ A rainfall-storms interpretation ?

- Ri : storm strength ;
- Wi(s) spatial variation of the storm strength . . .
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Max-stable process: common model

Specifying the W process in different ways, various max-stable models can
be constructed:
▶ Schlather model (Schlather, 2002)
▶ Brown–Resnick model (Kabluchko et al., 2009)
▶ Extremal-t model (Opitz, 2013)
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Schlather model

M(s) = const × sup
i≥1

Ri [max{0,Gi(s)}] , s ∈ S, s ∈ S,

▶ Gi are independent replicates of a standard Gaussian process with
correlation function ρ.

▶ ρ(s, s ′) = exp
{

− (∥s − s ′∥/ϕ)ψ
}

, ϕ > 0,0 < ψ ≤ 2.
▶ Useful package in R: mev, SpatialExtremes, RandomFields

ϕ = 1, ψ = 1 ϕ = 1, ψ = 1.95
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Extremal-t model

M(s) = const × sup
i≥1

Ri [max{0,Gi(s)}]ν , s ∈ S

▶ ρ(s, s ′) = exp
{

− (∥s − s ′∥/ϕ)ψ
}

, ϕ > 0,0 < ψ ≤ 2.

ϕ = 1, ψ = 1, ν = 2 ϕ = 1, ψ = 1, ν = 7
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θ(h) for max-stable process I

Recall the definition

Pr (M(s) ≤ z ,M(s + h) ≤ z) = Pr(M(s) ≤ z)θ(h),

▶ Schlather

θ(h) = 1 +

√
1 − ρ(h)

2

▶ t-extremal

θ(h) = 2Tν
{√

(1 − ρ(h))(ν + 1)
1 + ρ(h)

}
Tν CDF of a Student random variable with ν d.o.f.
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θ(h) for max-stable process II
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Australian rainfall: model fitting

Mn(s) ∼ GEV (y ;µ(s), σ(s), ξ(s))
µ(s) = hµ(long(s), lat(s))

log(σ(s)) = hσ(long(s), lat(s))
ξ(s) = γ0

+ Extremal-t
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Australian rainfall: simulations
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Are max-stable processes realistic models ?

Y(
s)

s

▶ Composition of a number of different events !
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Looking at specific trajectories ...
▶ Conditioning event {sups∈S Y (s) > u}, for large u
▶ We look at the law of

{Y (s), s ∈ S | sup
s∈S

Y (s) > u}
Y(

s)

s
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Model definition

▶ Theory simpler when marginal distributions are standard Pareto
distribution (M ∼ Pareto(1))

Pr{M ≤ z} = 1 − 1/z , z ≥ 1

▶ Models are mainly defined on this scale therefore we need to
transform the data

Y (s) −→ Ỹ (s) = 1
1 − Fs(Y (s))

▶ !△ ... we pretend to know the marginal distributions Fs(Y (s))
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Generalized Pareto (GP) process: formal definition

▶ Spatial extension of the argument that led to the GPD in the
univariate case (Ferreira and de Haan, 2014)

▶ Let {Ỹ (s)}s∈S be a stochastic process with Pareto(1). The limit{
Ỹ (s)

u

∣∣∣∣∣sup
s∈S

Ỹ (s) > u , s ∈ S
}

D−→ {Z (s), s ∈ S}, u → ∞,

{Z (s)} is called a standard Pareto process and

{Z (s), s ∈ S} D= {RW (s), s ∈ S} .

where R ∼ Pareto(1) is independent of W (s) ≥ 0, and sups∈S W (s) a.s.= 1
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New model ?

▶ Dependence structure as in the max-stable processes
▶ ... but more available data for inference and a simplified

representation, based on a single representation

Z (s) = RW (s)

▶ Threshold stability property

Pr(Z (s)/u ∈ B| sup
s∈S

Z (s) > u) = Pr(Z (s) ∈ B)

⇒ we may suppose that for large enough thresholds u on the Pareto
scale,

Ỹ (s)
u

∣∣∣∣∣ sup
s∈S

Ỹ (s) > u D≈ Z (s)
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New model ?

▶ Dependence structure as in the max-stable processes
▶ ... but more available data for inference and a simplified

representation, based on a single representation

Z (s) = RW (s)

▶ Threshold stability property

Pr(Z (s)/u ∈ B| sup
s∈S

Z (s) > u) = Pr(Z (s) ∈ B)

⇒ we may suppose that for large enough thresholds u on the Pareto
scale,

Ỹ (s)
u

∣∣∣∣∣ sup
s∈S

Ỹ (s) > u D≈ Z (s)
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Looking at other conditioning sets... I

▶ Conditioning event {sups∈S Y (s) > u}, for large u

{Y (s), s ∈ S | sup
s∈S

Y (s) > u}
Y(

s)

s
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Looking at other conditioning sets... II

▶ Conditioning event {infs∈S Y (s) > u}, for large u

{Y (s), s ∈ S | inf
s∈S

Y (s) > u}
Y(

s)

s
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Looking at other conditioning sets... III

▶ Conditioning event {
∫

s∈S Y (s) ds > u}, for large u

{Y (s), s ∈ S |
∫

s∈S
Y (s) ds > u}

Y(
s)

s
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Looking at other conditioning sets... IV

▶ Conditioning event {Y (s0) > u}, for large u

{Y (s), s ∈ S | Y (s0) > u}
Y(s

)

s
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ℓ-Pareto and r -Pareto processes

▶ Extension of GP processes (Dombry and Ribatet, 2015; de Fondeville
and Davison, 2022)

▶ Functional like as sups∈S Y (s),
∫

s∈S Y (s)ds,...
▶ r (or ℓ) risk homogeneous functional

r(cY ) = cr(Y ), c > 0

▶ Transform the data to ensure a common Pareto distribution, and
work on exceedances defined on this transformed scale {Ỹ (s)} . . . but
many extreme phenomena are most naturally characterized on
the scale of the original data.

Ỹ (s)
u

∣∣∣∣∣ r(Ỹ ) > u D≈ RW (s), with r(W ) a.s.= 1

62/ 78



Subasymptotic models for spatial extremes

Huser, R. and Wadsworth, J. (2022) Advances in statistical modeling of
spatial extremes, WIREs Computational Statistics, 14:e1537.
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Australian rainfall data: joint upper tail
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Pairwise extremal dependence

▶ Assume that Y (s) with common marginal distribution function
F (y) = Pr(Y (s) ≤ y) which has upper endpoint yF .

▶ Summary measure for extremal dependence of pair observations Y (s),
Y (s ′) when u ≃ yF .

χu(s, s ′) = Pr(Y (s) > u|Y (s ′) > u) = Pr(Y (s) > u,Y (s ′) > u)
Pr(Y (s ′) > u)

▶ If Y (s) and Y (s ′) are independent

χu(s, s ′) = Pr(Y (s) > u|Y (s ′) > u) = Pr(Y (s) > u)
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Coefficient of upper tail: χ I

▶ Tail dependence. Consider the limit

χu(s, s ′) → χ(s, s ′), as u → ∞.

▶ 0 ≤ χ(s, s ′) ≤ 1
▶ If for all s ̸= s ′, χ(s, s ′) > 0 the process is asymptotically dependent.
▶ If for all s ̸= s ′, χ(s, s ′) = 0 the process is asymptotic independence.
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Coefficient of upper tail: χ II

Examples:
▶ Max-stable stationary processes: asymptotically dependent for

∥s − s ′∥ ≤ h∗, independent for ∥s − s ′∥ > h∗

▶ Gaussian stationary processes are asymptotically independent
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Empirical extremal dependence measure: χ̂u(s, s ′)
We inspect several thresholds u and distances ∥s − s ′∥
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Features of the data

▶ Dependence weakens as
distance increases
threshold increases

▶ Asymptotic dependence or independence?
▶ Different dependence structures at different lags
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Models for exceedances of Y (s)
▶ Models for {max(Y (s) − u, 0), s ∈ S} with u large

Y
(s

)

s

▶ We look at models that allow for both dependence classes
70/ 78



Hybrid models

▶ Wadsworth and Tawn (2012), Bacro et al. (2016)

Y (s) = max (βAD(s), (1 − β)AI(s)) , β ∈ [0, 1]

▶ AD(s) an asymptotically dependent process up to a fixed distance
▶ AI(s) an asymptotically independent process
▶ Independent and both with unit Fréchet margins.
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Hybrid models: simulation
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Australian data rainfall

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q0.9

Distance

χ

A2

B
C3

●

●

●

●

●●

●
●

● ●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

0 500 1000 1500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

q0.95

Distance

χ

A2

B
C3

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

A2: Hybrid, B: AD, C3: AI

73/ 78



Model for uncertain extremal dependence

▶ Huser and Wadsworth (2019)

Y (s) = Rδ {AI(s)}1−δ , δ ∈ [0, 1]

▶ R ∼ Pareto(1)
▶ AI(s) ∼ Pareto(1) marginally

χu(s, s ′) → χ(s, s ′) =
{

> 0 for δ > 1/2
= 0 for δ > 1/2 , as u → ∞.
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No more time for ...

More models
▶ Max-infinitely divisible processes (Huser et al., 2021)
▶ Conditional spatial extremes model (Wadsworth and Tawn, 2022)

Estimation
▶ Max-stable (Davison et al., 2012)
▶ Exceedances (de Fondeville and Davison, 2022)

Simulation
▶ Unconditional simulation (Oesting et al., 2012)
▶ Conditional simulation (Dombry et al., 2013)
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