Traitement des données massives et apprentissage École d'été, 5-9 juin 2023

Introduction to deep learning and neural networks

Emanuele Dalsasso (CÉDRIC, CNAM, Paris)

le cnam

June, 2023

Big Data

- Explosion of data availability: images, videos, audio, text, etc
- Sources: Media, Social Networks, Open data policies for commercial and/or scientific purposes

Digital data

Biomedical instruments

Remote Sensing sensors

- Need to access, search, analysis, visualise, classify these data
- Huge number of applications: medicine, economy, science etc
- Leading track in major ML/CV conferences during the last decade

Context leading to deep learning rise

- Visual Recognition: archetype of low-level signal understanding
- Supposed to be a master class problem in the early 80's
- Certainly the most impacted topic by deep learning
 - Scene categorization
 - Object localization
 - Context & Attribute recognition
 - Rough 3D layout, depth ordering
 - Rich description of scene, e.g. sentences

Listender auchause:

Example of Semantic Segmentation in Earth Observation†

Example of Visual Question Answering in Remote Sensing‡

[†] Illustration from Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance suite, dataset analysis and multi-task network study, Castillo-Navaro, Javiera, et al., Machine Learning 2021 #Illustration from RSVOA: Visual question answering for remote sensing data, Lobry, Sylvain, et al., IEEE TGRS 2020

Introduction to deep learning

Deep Learning (DL) & Recognition of low-level signals

- DL: breakthrough for the recognition of low-level signal data
- Before DL: handcrafted intermediate representations for each task
 - ⊖ Needs expertise (PhD level) in each field
 - $\bullet \ \ominus$ Weak level of semantics in the representation

Deep Learning (DL) & Recognition of low-level signals

- DL: breakthrough for the recognition of low-level signal data
- Since DL: automatically learning intermediate representations
 - Outstanding experimental performances >> handcrafted features

 - ⊕ Common learning methodology ⇒ field independent, no expertise

From Machine Learning to Earth Sciences

† Illustration from Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019

Outline

Deep Feedforward Networks

- Undestanding deep networks
- Backpropagation and neural network training

2 Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

History

- 1943: The formal neuron [McCulloch and Pitts, 1943]
- 1958: First perceptron [Rosenblatt, 1958]
- 1974: Backpropagation algorithm [Werbos, 1974]
- 1980: First deep feedforward network [Fukushima, 1980]
- 1989: First convolutional neural network [LeCun et al., 1989]

The formal neuron, basis of deep feedforward neural networks

 x_i : inputs w_i, b : weights and biases f: activation function y: output of the neuron

$$y = f(w^\top x + b)$$

Outline

Deep Feedforward Networks

- Undestanding deep networks
- Backpropagation and neural network training

2 Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

Example: Learning XOR

Example: Learning XOR

$$y = f^{\star}(\mathbf{x}) = x_1 \oplus x_2$$

Single perceptron

Define MSE loss function to learn parameters θ of f^θ(x):

$$\mathcal{L} = \frac{1}{4} \sum_{i=1}^{4} (f^{\star}(\mathbf{x}_i) - f^{\boldsymbol{\theta}}(\mathbf{x}_i))^2$$

• Linear model defined by

$$f^{\mathbf{w},b}(\mathbf{x}) = \mathbf{x}^T \mathbf{w} + b$$

- The solution gives $\mathbf{w} = \mathbf{0}$ and $b = \frac{1}{2}$: $f^{\mathbf{w},b}(\mathbf{x}) = \frac{1}{2}$
- Data are not linearly separable

Example: Learning XOR

The XOR function

$$y = f^{\star}(\mathbf{x}) = x_1 \oplus x_2$$

Multi-layer perceptron

 Define MSE loss function to learn parameters θ of f^θ(x):

$$\mathcal{L} = \frac{1}{4} \sum_{i=1}^{4} (f^{\star}(\mathbf{x}_i) - f^{\boldsymbol{\theta}}(\mathbf{x}_i))^2$$

- Define different feature space where the linear model is able to represent the solution
- Nonlinear model defined by

$$f(\mathbf{x})^{(\mathbf{W},\mathbf{b},\mathbf{w},b)} = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{b}\} + b$$

• The solution gives $\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and b = 0, which perfectly fits with data

Two ways of representing a perceptron with 1 hidden layer

The rectified linear unit **ReLU** activation function

 Single perceptron can only represent linear functions (linear regression, logistic regression):

$$f(\mathbf{x})^{(\mathbf{w},b)} = \mathbf{x}^T \mathbf{w} + b$$

 Represent nonlinear functions by apply linear model to a nonlinear transformation of the input x:

$$f(\mathbf{x})^{(\mathbf{W},\mathbf{b},\mathbf{w},b)} = \mathbf{w}^T \max\{0, \mathbf{W}^T \mathbf{x} + \mathbf{b}\} + b$$

 \Rightarrow learn XOR by breaking it down to OR, NAND and AND

Illustrations from Deep learning, Goodfellow, Ian, Yoshua Bengio, and Aaron Courville, MIT press, 2016.

Dalsasso E.

Deep Feedforward Networks

Perceptron with 1 hidden layer - Credits: R. Herault

Stacking more layers, toward "deep learning" – Credits: M. Nielsen

- Feedforward: flow of information from \mathbf{x} to \mathbf{y}
- **Neural**: ispired by neuroscience. The elementary element is called *neuron*
- **Network**: stack of several different functions (layers). For instance:
 - $\mathbf{y} = f(\mathbf{x}) = f^{(3)}(f^{(2)}(f^{(1)}(\mathbf{x}))))$
 - The length of the chain gives the **depth** (*deep learning*): *different levels of abstraction* from low-level features to the high-level ones
 - $f^{(3)}$ is the **output layer**
 - $f^{(1)}$ and $f^{(2)}$ are hidden layers
- Activation functions (nonlinearities): ReLU, Sigmoid, Tanh, Softmax, ..

 \Rightarrow Build universal function approximators from simple components

The Multi-Layer Perceptron (MLP)

- Basis of the "deep learning" field
- Principle: Stacking layers of neural networks to allow more complex and rich functions
- Can be seen as different levels of abstraction from low-level features to the high-level ones
- - Ex for classification: any decision boundaries can be expressed

Outline

Deep Feedforward Networks

- Undestanding deep networks
- Backpropagation and neural network training

2 Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

Training Multi-Layer Perceptron (MLP)

- Input x, output y
- A parametrized model $\mathbf{x} \Rightarrow \mathbf{y}$: $f_{\mathbf{w}}(\mathbf{x}_i) = \hat{\mathbf{y}_i}$
- Supervised context: training set $\mathcal{A} = \{(\mathbf{x}_i, \mathbf{y}_i^*)\}_{i \in \{1, 2, ..., N\}}$
 - A loss function $\ell(\hat{\mathbf{y}_i}, \mathbf{y}_i^*)$ for each annotated pair $(\mathbf{x}_i, \mathbf{y}_i^*)$
- Assumptions: parameters $\mathbf{w} \in \mathbb{R}^d$ continuous, \mathcal{L} differentiable
- Gradient $\nabla_{\mathbf{w}} = \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$: steepest direction to decrease loss \mathcal{L}

MLP Training

- Gradient descent algorithm:
 - Initialyze parameters w
 - Update: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \boldsymbol{\eta} \frac{\partial \mathcal{L}}{\partial \mathbf{w}}$
 - Until convergence, e.g. $||\nabla_{\mathbf{w}}||^2 \approx 0$

MLP Training: loss function

- Input x_i, ground truth output supervision y^{*}_i
- One hot-encoding for y^{*}_i:

 $y^*_{c,i} = \begin{cases} 1 & \text{if c is the groud truth class for } \mathbf{x}_i \\ 0 & \text{otherwise} \end{cases}$

MLP Training

- Loss function: multi-class Cross-Entropy (CE) ℓ_{CE}
- ℓ_{CE} : Kullback-Leiber divergence between \mathbf{y}_i^* and $\hat{\mathbf{y}}_i$

$$\ell_{CE}(\hat{\mathbf{y}}_{i}, \mathbf{y}_{i}^{*}) = KL(\mathbf{y}_{i}^{*}, \hat{\mathbf{y}}_{i}) = -\sum_{c=1}^{K} y_{c,i}^{*} log(\hat{y}_{c,i}) = -log(\hat{y}_{c^{*},i})$$

•
$$\mathcal{L}_{CE}(\mathbf{W}, \mathbf{b}) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{\mathbf{y}}_i, \mathbf{y}_i^*) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^*, i})$$

ℓ_{CE} smooth convex upper bound of ℓ_{0/1}
 ⇒ gradient descent optimization

• Gradient descent:
$$\mathbf{W}^{(t+1)} = \mathbf{W}^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{W}} \quad (\mathbf{b}^{(t+1)} = \mathbf{b}^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{b}})$$

• Computing
$$\frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{W}} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}}{\partial \mathbf{W}}$$
?

 \Rightarrow Backpropagation of gradient error!

$$\Rightarrow \underline{\text{Key Property:}} \text{ chain rule } \frac{\partial \mathbf{x}}{\partial z} = \frac{\partial \mathbf{x}}{\partial \mathbf{y}} \frac{\partial \mathbf{y}}{\partial z}$$

Chain Rule

Deep Neural Network Training: Backpropagation

- Multi-Layer Perceptron (MLP): adding more hidden layers
- Backpropagation update \sim application of chain rule recursively through all network layers

Neural Network Training: Optimization Issues

• Classification loss over training set (w):

$$\mathcal{L}_{CE}(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} \ell_{CE}(\hat{\mathbf{y}}_{i}, \mathbf{y}_{i}^{*}) = -\frac{1}{N} \sum_{i=1}^{N} log(\hat{y}_{c^{*}, i})$$

• Gradient descent optimization:

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \frac{\partial \mathcal{L}_{CE}}{\partial \mathbf{w}} \left(\mathbf{w}^{(t)} \right) = \mathbf{w}^{(t)} - \eta \nabla_{\mathbf{w}}^{(t)}$$

• Gradient
$$\nabla_{\mathbf{w}}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{\mathbf{y}}_i, \mathbf{y}_i^*)}{\partial \mathbf{w}} (\mathbf{w}^{(t)})$$
 linearly scales wrt:

- w dimension
- Training set size

\Rightarrow Too slow even for moderate dimensionality & dataset size!

Stochastic Gradient Descent

- <u>Solution</u>: approximate $\nabla_{\mathbf{w}}^{(t)} = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ell_{CE}(\hat{\mathbf{y}_i}, \mathbf{y}_i^*)}{\partial \mathbf{w}} (\mathbf{w}^{(t)})$ with subset \Rightarrow Stochastic Gradient Descent (SGD)
 - Use a single example (online):

$$\nabla_{\mathbf{w}}^{(t)} \approx \frac{\partial \ell_{CE}(\hat{\mathbf{y}}_i, \mathbf{y}_i^*)}{\partial \mathbf{w}} \left(\mathbf{w}^{(t)} \right)$$

• Mini-batch: use B < N examples (avoids redundancy):

Stochastic Gradient Descent

• SGD: approximation of the true Gradient $\nabla_{\mathbf{w}}$!

- Noisy gradient can lead to bad direction, increase loss
- **BUT:** much more parameter updates: online $\times N$, mini-batch $\times \frac{N}{B}$
- Faster convergence, at the core of Deep Learning for large scale datasets

Optimization: Learning Rate Decay

- Gradient descent optimization: $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} \boldsymbol{\eta} \nabla_{\mathbf{w}}^{(t)}$
- η setup ? \Rightarrow open question
- Learning Rate Decay: decrease η during training progress
 - Inverse (time-based) decay: $\eta_t = \frac{\eta_0}{1+r \cdot t}$, r decay rate
 - Exponential decay: $\eta_t = \eta_0 \cdot e^{-\lambda t}$

• Step Decay
$$oldsymbol{\eta}_t = oldsymbol{\eta}_0 \cdot r^{\,\overline{t_u}}$$
 ..

Generalization and Overfitting

- Learning: minimizing classification loss \mathcal{L}_{CE} over training set
 - Training set: sample representing data vs labels distributions
 - Ultimate goal: train a prediction function with low prediction error on the true (unknown) data distribution

- Regularization: improving generalization, *i.e.* test (≠ *train*) performances
- Structural regularization: add *Prior* $R(\mathbf{w})$ in training objective:

$$\mathcal{L}(\mathbf{w}) = \mathcal{L}_{CE}(\mathbf{w}) + \alpha R(\mathbf{w})$$

- L^2 regularization: weight decay, $R(\mathbf{w}) = ||\mathbf{w}||^2$
 - · Commonly used in neural networks
 - Theoretical justifications, generalization bounds (SVM)
- Other possible $R(\mathbf{w})$: L^1 regularization, dropout, *etc*

Regularization and hyper-parameters

- Neural networks: hyper-parameters to tune:
 - Training parameters: learning rate, weight decay, learning rate decay, # epochs, etc
 - Architectural parameters: number of layers, number neurones, non-linearity type, etc
- Hyper-parameters tuning: ⇒ improve generalization: estimate performances on a validation set

References I

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of control, signals and systems, 2(4):303–314.

[Fukushima, 1980] Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. *Biological cybernetics*, 36(4):193–202.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). *Deep Learning.* MIT Press. http://www.deeplearningbook.org.

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. *Neural computation*, 1(4):541–551.

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133.

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. *Psychological Review*, 65(6):388–408.

[Werbos, 1974] Werbos, P. (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD thesis, Harvard University.

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training

2 Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

Introduction to CNN

- In MLPs each layer of the network contained fully connected layers
- Unfortunately, there are great drawbacks with such an approach

- Each hidden unit is connected to each input unit
- There is high redundancy in these weights :
 - In the above example, 65 million weights are required

Introduction to CNN

- For many types of data with **grid-like topological structures** (eg. images), it is not necessary to have so many weights
- For these data, the convolution operation is often extremely useful
- Reduces the number of parameters to train
 - Training is faster
 - · Convergence is easier : smaller parameter space

• A neural network with convolution operations is known as a **Convolutional Neural Network** (CNN)

- "Neocognitron" of Fukushima* : first to incorporate notion of receptive field into a neural network, based on work on animal perception of Hubert and Weisel[†]
- Yann LeCun first to propose back-propagation for training convolutional neural networks[‡]
 - Automatic learning of parameters instead of hand-crafted weights
 - However, training was very long : required 3 days (in 1990)
- In the years 1998-2012, research continued on shallow and deep neural networks, but other machine learning approaches were preferred (GMMs, SVMs etc.)
- In 2012, Alex Krizhevsky et al. used Graphics Processing Units (GPUs) to carry out backpropagation on a very deep convolutional neural network
 - Greatly outperformed classic approaches in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)

Fig. 2. Architecture of LeNet-5, a Convolutional Neural Network, here for digits recognition. Each plane is a feature map, i.e. a set of units whose weights are constrained to be identical.

* Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position, Fukushima, K., Biological Cybernetics, 1980

[†] Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H. and Wiesel, T. N, 1968

Backpropagation Applied to Handwritten Zip Code Recognition, LeCun, Y. et al., AT&T Bell Laboratories

Introduction - some history

- Since 2012, CNNs have completely revolutionised many domains
- CNNs produce competetive/best results for most problems in image processing and computer vision

Being applied to an ever-increasing number of problems
Outline

Deep Feedforward Networks

- Undestanding deep networks
- Backpropagation and neural network training

Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

Introduction - some notation

Notations

- $x \in \mathbb{R}^n$: input vector
- $y \in \mathbb{R}^q$: output vector
- u_ℓ : feature vector at layer ℓ
- $\boldsymbol{\theta}_{\ell}$: network parameters at layer ℓ

Introduction

- A "Convolutional Neural Network" (CNN) is simply a concatenation of :
 - Convolutions (filters)
 - Additive biases
 - Own-sampling ("Max-Pooling" etc.)
 - Non-linearities

Outline

Deep Feedforward Networks

- Undestanding deep networks
- Backpropagation and neural network training

Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

Convolution operator

Let f and g be two integrable functions. The **convolution operator** * takes as its input two such functions, and outputs another function h = f * g, which is defined at any point $t \in \mathbb{R}$ as :

$$h(t) = (f * g)(t) = \int_{-\infty}^{+\infty} f(\tau)g(t - \tau)d\tau.$$

• Intuitively, the function h is defined as the inner product between f and a *shifted* version of g

 In many practical applications, in particular for CNNs, we use the discrete convolution operator, which acts on discretised functions;

Discrete convolution operator

Let f_n and g_n be two summable series, with $n \in \mathbb{Z}$. The discrete convolution operator is defined as :

$$(f * g)(n) = \sum_{i=-\infty}^{+\infty} f(i)g(n-i)$$

- Intuitively, the function h is defined as the inner product between f and a *shifted* version of g
- In practice, the filter is of small spatial support, around 3×3 , or 5×5
- Therefore, only a small number of parameters need to be trained (9 or 25 for these filters)

Convolutional Layers - 2D Convolution

- Most often, we are going to be working with images
- Therefore, we require a 2D convolution operator : this is defined in a very similar manner to 1D convolution :

2D convolution operator

$$(f * g)(s,t) = \sum_{i=-\infty}^{+\infty} \sum_{j=-\infty}^{+\infty} f(i,j)g(s-i,t-j)$$

- We are going to denote the filters with w
- For lighter notation, we write $w(i) =: w_i$ (and the same for x_i etc.)

 ļ	 	 ļ	 	
		 1		
 	 	 ļ		

 \mathcal{U}

 \mathcal{U}

- The filter weights w_i determine what type of "feature" can be detected by convolutional layers;
- Example, sobel filters :

Horizontal edge $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$

Vertical edge

「 -1	0	1	1
-2	0	2	
L -1	0	1	

• Convolutional filters can also act as low-pass/smoothing filters

Input image

Low-pass filtered image

 We can also write convolution as a matrix/vector product, as in the case of fully connected layers

- This further illustrates the drastic reduction in weight parameters (9 instead of Kn)
- Can be useful to view convolution in this manner \rightarrow Backpropagation

At this point, it is good to have a more "neural network"-based illustration of CNNs

- We can see the main justifications for CNNs
 - Sparse connectivity
 - Weight sharing
 - Equivariance to translation

• optimization of a neural network with convolutional layers through back-propagation

- In many cases, we are primarily interested in detection;
- We would like to detect objects wherever they are in the image

- Formally, we would like to have some shift invariance property;
- This is done in CNNs by using **subsampling**, or some variant :
 - Strided convolutions
 - Max pooling
- We explain these now

Outline

Deep Feedforward Networks

- Undestanding deep networks
- Backpropagation and neural network training

Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

The Receptive Field

- The region of the image which an individual filter responds to is known as the "receptive field" of that filter
- The receptive field of a deep networks corresponds to that of the filters contained in the last layer

Illustration from: Deep learning book, Goodfellow, I., Bengio, Y., & Courville, A., MIT Press 2016, https://www.deeplearningbook.org/slides/09_conv.pdf/ • Strided convolution is simply convolution, followed by subsampling

Subsampling operator (for 1D case)

Let $x \in \mathbb{R}^n$. We define the subsampling step as $\delta > 1$, and the subsampling operator $S\delta: \mathbb{R}^n \to \mathbb{R}^{\frac{n}{\delta}}$, applied to x, as

$$S_{\delta}(x) (t) = x(\delta t), \text{ for } t = 0 \dots \frac{n}{\delta} - 1$$

Max pooling

- Max pooling subsampling consists in taking the maximum value over a certain region
- This maximum value is the new subsampled value
- We will indicate the max pooling operator with Sm

Max pooling

• Back propagation of max pooling only passes the gradient through the maximum

Down-sampling

- Conclusion : cascade of convolution, non-linearities and subsampling produces shift-invariant classification/detection
- We can detect Roger wherever he is in the image !

Convolution + non-linearity +max pooling

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training

Convolutional Neural Networks

- Introduction, notation
- Convolutional Layers
- Down-sampling and the receptive field
- Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

How to build your CNN ?

How to build your CNN ?

- We have looked at the following operations : convolutions, additive biases, non-linearities
- All of these elements make up convolutional neural networks
- However, how do we put these together to create our own CNN ?
 - Programming tools ? Pytorch, Tensorflow,...
 - Datasets ?
 - Architecture ?
 - Loss function ?

MNIST dataset: 60,000 28×28 pixel grey-level images containing hand-written digits. "simple" dataset, still used to display performance of modern CNNs **Caltech 101**: recongnition dataset. 9,146 images, 101 object categories, each category contains between 40 and 800 images ImageNet: 14,197,122 images, hand-annotated. Used for the ImageNet Large Scale Visual Recognition Challenge, an annual benchmark competition for object recognition algorithms

0	0	0	0	0	0	0	0	D	٥	0	0	0	0	٥	0
1	L	١	۱	1	1	/	(/	1	١	1	1	١	1	1
2	ړ	2	2	ð	ð	2	2	ደ	2	2	2	2	2	2	2
З	3	3	3	3	3	3	3	3	3	З	З	3	3	З	з
ч	4	٤	ч	4	4	ч	ч	f	4	4	4	9	٩	¥	4
5	5	5	5	5	s	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	ь	6	4	6	6	6	6	b
¥,	7	7	٦	7	7	η	7	2	η	7	7	7	7	7	7
8	С	8	8	8	8	8	8	8	8	8	8	۴	8	8	8
9	٩	9	9	9	9	٦	9	٩	η	9	9	9	9	9	9

Image classification

- We have input datapoints x, which we wish to classify into several, predefined classes $\{c_i\}, i = 1...K$, where K is the number of classes
- As we have seen, convolution, non-linearities, subsampling allow for robust classification that is invariant to many perturbations

• Vast majority of CNN classification networks follow this general architecture and use the following **Cross-Entropy** loss function:

$$\mathcal{L}_{CE} = -\sum_{i=1}^{K} y_{c_i} \log \hat{y}_{c_i} , \quad \hat{y}_{c_i} = \text{Softmax}(z_{c_i}) = \frac{e^{z_{c_i}}}{\sum_{i=1}^{K} e^{z_{c_i}}}$$

- We can also detect the position of objects in images
- RNN* proposes a simple approach :
 - Propose a list of bounding boxes in the image
 - Pass the resized sub-images through a powerful classification network
 - Olassify each sub-image with your favourite classifier

R-CNN: Regions with CNN features

• Many variants on this work (Fast R-NN, Faster R-CNN) etc.

* Rich feature hierarchies for accurate object detection and semantic segmentation, Girschik, R. et al. CVPR 2014
- Image segmentation is a particular case of image classification, where a label is assigned to each image pixel
- Most of architectures are based on U-Net*
 - Pooling layers to encode image semantic
 - Residual (or skip) connections allow the flow of information to preserve fine details from the input image

* U-net: Convolutional networks for biomedical image segmentation, Ronneberger, Olaf, et al., MICCAI 2015

Image denoising

- Goal: reconstruct the clean signal \mathbf{x} from a noisy measurement $\mathbf{y} = \mathbf{x} + \mathbf{n}$, with \mathbf{n} being the noise
- Achieved by mimizing the distance between *f*_θ(y) and x for each image pixel indexed by *i*:

$$\mathcal{L}_2 = \sum_i \|f_{\boldsymbol{\theta}}(y_i) - x_i\|^2$$
$$\mathcal{L}_1 = \sum_i \|f_{\boldsymbol{\theta}}(y_i) - x_i\|$$

Majority of architectures employ a residual learning strategy*

* Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising, Zhang, Kai, et al., IEEE TIP 2017

Super-resolution

- Image super-resolution : go from a low-resolution image to a higher-resolution one
- Relatively straightforward approach with a CNN*

Drawback, highly dependent on degradation used in lower-resolution images in database

* Learning a deep convolutional network for image super-resolution, Chao et al, ECCV 2014

Motion estimation

- Motion estimation is a central task for many image processing and computer vision problems : tracking, video editing
- Optical flow involves estimating a vector field (u, v): $\mathbb{R}^2 \to \mathbb{R}^2$ where each vector points to the displacement of pixel (x, y) from an image I_1 to I_2

 $I_1(x, y) = I_2(x + u(x, y), y + v(x, y))$

(a) Frame 1

(b) Frame 2

Optical flow

Illustration from : BriefMatch: Dense binary feature matching for real-time optical flow estimation, Eilertsen, G, Forssén, P-E, Unger, J., Scandinavian Conference on Image Analysis, 2017

Attention mechanism in image networks

• Attention mechanism originally developed in RNNs : addresses problem of long range dependency

→Networks exist with attention only : transformer*

• Also used in image network architectures (usually self-attention)

 $Attention(Q, K, V) = Softmax(QK^T)V$

- This equation says that the attention is a weighted version of \boldsymbol{V}
- The weights are given by a softmax of the dot products between patches in Q and those in K

* Attention is all you need, Vaswani et al, NIPS, 2017

Attention mechanism in image networks

* Attention is all you need, Vaswani et al, NIPS, 2017

Attention mechanism in image networks

- Combined attention/convolution archtictures present the best accuracies on ImageNeT (to date*)
 - CoAt-Net7: 90.88% accuracy on ImageNet

Rank	Model	Top 1 🕈 Accuracy	Top 5 Accuracy	of params	Training Data	Paper	Code	Result	Year	Tags 🗹
1	CoAtNet-7	90.88%		2440M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	C	Ð	2021	Conv+Transformer JFT-38
2	VIT-G/14	90.45%		1843M	~	Scaling Vision Transformers		-9	2021	Transformer JFT-38
3	CoAtNet-6	90.45%		1470M	~	CoAtNet: Marrying Convolution and Attention for All Data Sizes	C	-0	2021	Conv+Transformer JFT-38
4	VIT-MoE-15B (Every-2)	90.35%		14700M	~	Scaling Vision with Sparse Mixture of Experts		Ð	2021	Transformer JFT-38
5	Meta Pseudo Labels (EfficientNet+L2)	90.2%	98.8	480M	~	Meta Pseudo Labels	o	-9	2020	EfficientNet

* https://paperswithcode.com/sota/image-classification-on-imagenet

Adversarial examples

- We often get the impression that CNNs are the end all and be all of AI
- Consistently produce state-of-the-art results on images
- However, CNNs are not infallible : adversarial examples[†] !

+ .007 \times

• How was this image created ???

[†] Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013

Adversarial examples

- We often get the impression that CNNs are the end all and be all of AI
- Consistently produce state-of-the-art results on images
- However, CNNs are not infallible : adversarial examples[†] !
- Szegedy et al. propose[‡] add a small perturbation r that fools the classifier network f into choosing the wrong class c for $\hat{x} = x + r$

 $\arg\min |r|_2^2, \ \text{s.t} \ f(x+r) = c, \ x+r \in [0,1]^n$

- \hat{x} is the closest example to x s.t \hat{x} is classified as in class c
- Minimisation with box-constrained L-BFGS algorithm

Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013 Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013

Adversarial examples

• Common explanation : the space of images is very high-dimensional, and contains many areas that are unexplored during training time

Example of loss surfaces in commonly used networks (Res-Nets)

Illustration from Visualizing the Loss Landscape of Neural Nets, Li, H et al, NIPS, 2018

Dalsasso E.

Introduction to deep learning

5th June 2023 60/101

- CNNs represent the state-of-the art in many different domains/problems
- If you have an unsolved problem, there is a good chance CNNs will produce a good/excellent result
- However : theoretical understanding is still relatively limited
 - This leads to problems such as adversarial examples
 - It is not clear whether CNNs are truly robust/generalisable
 - This is a hot research topic, important if CNNs are to be used in industrial applications

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training
- 2 Convolutional Neural Networks
 - Introduction, notation
 - Convolutional Layers
 - Down-sampling and the receptive field
 - Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

Context

- CNNs are designed to capture spatial relationships for matrix-like data
- Signals that evolves through time are modeled as sequences

Example of Earth observation sequential data[†]

Example of spectrogram of an audio signal

Visual Question Answering in Remote Sensing‡

[†] Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences, Camps-Valls, Gustau, et al., John Wiley & Sons, 2021.

‡Illustration from Toward a collective agenda on ai for earth science data analysis, Tuia, Devis, et al., IEEE GRSM 2021

Dalsasso E.

Context

Deep Feedforward Network can process single elements or fixed-length sequences

$$\mathbf{y} = f(\mathbf{x}_t)$$
 or $\mathbf{y} = f(\mathbf{x}_t, \mathbf{x}_{t-1}, \dots, \mathbf{x}_{t-p})$

Single-time and multi-time feedforward neural networks[†]

 \rightarrow They fail to dynamically capture the temporal context: **Recurrent Neural Networks** (**RNNs**) do that: $\mathbf{y} = f(\{\mathbf{x}_t\}_{t=0}^r)$

Structure of a recurrent neural network[‡]

[†] Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences, Camps-Valls, Gustau, et al., John Wiley & Sons, 2021.

Illustration from http://ai.stanford.edu/~quocle/tutorial2.pdf

Recurrent Neural Networks

- Relaxation of Feedforward Neural Networks to allow feedback loops \rightarrow allows to process sequences of variable lenght
- Backpropagation is not directly applicable due to feedback loops
 → RNN can be reformulated as Deep Feedforward Networks

An unrolled recurrent neural network[†]

Layers correspond to individual times

† Illustration from http://ai.stanford.edu/~quocle/tutorial2.pdf

Recurrent Neural Networks training

- RNN elements:
 - W: input hidden weights
 - U: hidden to hidden weigths
 - V: hidden to label weigths
 - ht: hidden state

 $f(x) = Vh_T$ $h_t = \sigma(Uh_{t-1} + Wx_t), \text{ for } t = T, \dots, 1$ $h_0 = \sigma(Wx_0)$

Structure of a recurrent neural network[†]

• Backpropagation through T layers involves multiplying $\times T$ the shared weights matrix \rightarrow **Exploding** or **Vanishing Gradient** problem^{1,2}

[#] Illustration from http://ai.stanford.edu/~quocle/tutorial2.pdf

¹ Long short-term memory., Hochreiter, Sepp, and Jürgen Schmidhuber, Neural computation, 1997

² Learning long-term dependencies with gradient descent is difficult. Bengio, Yoshua et al., IEEE transactions on neural networks, 1994

Gated Variants of RNNs

- The most popular variant of RNNs are Long Short-Term Memory (LSTM) networks
- Composed by several gates controlling the information flow

• The "memory" c can allow the gradient to pass through without vanishing

[†] Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences, Camps-Valls, Gustau, et al., John Wiley & Sons, 2021

Dalsasso E.

 \rightarrow LSTM retrieves long-term temporal context to predict future states

[†] Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences, Camps-Valls, Gustau, et al., John Wiley & Sons, 2021

Dalsasso E.

Gated Variants of RNNs

• LSTM are better at modeling temporal relationships than CNN

However, CNN can capture the spatial context

 \rightarrow To account for spatio-temporal relationships, architectures combining CNNs and LSTM have been proposed

Convolutional LSTM Network[‡]

[†] Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences, Camps-Valls, Gustau, et al., John Wiley & Sons, 2021

[‡] Illustration from Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Shi, Xingjian, et al., NeurIPS 2015.

Dalsasso E.

- The sequential nature of RNNs precludes parallelization within training examples: critical for long sequences
- Transformer architecture* relies entirely on attention mechanism to derive global dependences between input and oputput
- Every position in the decoder attends over all positions in the input sequence

• Led to the development of Large Language Models

* Attention is all you need, Vaswani et al, NIPS, 2017

Illustration from Transformers in vision: A survey, Khan, Salman, et al., ACM computing surveys (CSUR) 2022

Applications of RNNs and Transformer networks

- Language Modeling
- Speech Recognition
- Music Generation/Synthesis
- Precipitation Nowcasting
- Crop classification

Examples of problems where data are modeled as sequences †

Ocean Wind speed estimation with transformers[‡]

† Illustration from Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019 ‡Illustration from DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation, Zhao et al, Remote Sensing of Environment, 2023

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training
- 2 Convolutional Neural Networks
 - Introduction, notation
 - Convolutional Layers
 - Down-sampling and the receptive field
 - Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

5 Conclusion

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training
- 2 Convolutional Neural Networks
 - Introduction, notation
 - Convolutional Layers
 - Down-sampling and the receptive field
 - Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

Autoencoders and Generative Models Autoencoders

Generative Models

Conclusion

Introduction to autoencoders

- Neural networks are often used for :
 - Classification/detection (MLPs, CNNs)
 - Modelling time-series, sequences (RNNs)
- All of these networks rely on the extraction of features to analyse data
- Idea : the network's internal representation of the data can be useful !
- Autoencoders and more generally generative models use this idea

- Autoencoders consist of two networks : an encoder and a decoder
 - Encoder : map data x to a smaller latent space
 - Decoder : map point z back from latent space to original data space
- Main idea : the latent space is a space where it is easier to manipulate/understand data
- More powerful and compact representation of data

Autoencoder

- The autoencoder is trained to minimise some norm between the input *x* and the output *y* of the decoder
- In almost all cases, we have $d \ll mn$
- This forces the autoencoder to learn a compact and powerful latent space

- The autoencoder is trained to minimise some norm between the input *x* and the output *y* of the decoder
- In almost all cases, we have d << mn
- This forces the autoencoder to learn a compact and powerful latent space

Autoencoding training minimisation problem

$$\begin{split} \mathcal{L}(x) &= \|y - x\|_2^2 \\ &= \sum_i^m \sum_j^n \left((\Phi_d \circ \Phi_e(x))_{i,j} - x_{i,j} \right)^2 \end{split}$$

• Put simply : output should look like input !

Dalsasso E.

- Uses of autoencoders :
 - Data compression, dimensionality reduction
 - Classification (easier in latent space)
 - Data generation/synthesis

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training
- 2 Convolutional Neural Networks
 - Introduction, notation
 - Convolutional Layers
 - Down-sampling and the receptive field
 - Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

Autoencoders and Generative Models

- Autoencoders
- Generative Models

Conclusion

Generative models

- In many applications, it is desirable to synthesise data
 - Video post-production
 - Data augmentation
 - Imrove performances of simulators
 - Domain adaptation
- Several types of generative models exist :
 - Restricted Bolzmann machines, Deep Belief models
 - Variational autoencoders
 - Generative Adversarial Networks;
 - Diffusion models;
- The common idea in these models is the internal representation/latent space of the network

Generative models

• Modern generative models produce highly realistic, (relatively) high-definition images

Synthesis examples from "Real NVP"[†]

• Before, let us take a step back to autoencoders

Density estimation using Real NVP, L. Dinh, J. Sohl-Dickstein, S. Bengio, arXiv:1605.08803 2016

Variational autoencoder

• Suppose we want to produce random examples of data, how would we go about this ?

Variational autoencoder

- Suppose we want to produce random examples of data, how would we go about this ?
- We can model the latent space in a probabilistic manner
- Synthesis will then consist of :
 - Sampling in the latent space
 - 2 Decoding to produce the random image

Probabilistic model in latent space

Synthesis of random image

loss = $|| \mathbf{x} - \hat{\mathbf{x}} ||^2 = || \mathbf{x} - \mathbf{d}(\mathbf{z}) ||^2 = || \mathbf{x} - \mathbf{d}(\mathbf{e}(\mathbf{x})) ||^2$

An autoencoder with its loss function[†]

• What is the link between autoencoders and sample generation?

† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

- Generate new examples by sampling into the latent space
- The quality of generated data depends on the regularity of the latent space →Enforce regularity with a probabilistic approach

† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

- Regularize the training of an autoencoder to avoid overfitting and ensure that the latent space has a specific organization
- The latent space distribution is often chosen to be Normal
- Regularization is enforced by an additional loss function based on the **Kullback-Leibler** divergence between the latent space distribution and the Normal distribution

† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
VAE loss function is the sum of a Reconstruction error and a Regularization term eforcing the chosen prior distribution on the latent space

loss = $||x - x'||^2 + KL[N(\mu_x, \sigma_y), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_y), N(0, I)]$

† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational Autoencoder

- There remains one more important detail : how to backpropagate through samples of z ? Random variable, not differentiable
- Solution : "reparametrisation trick", make the random element an network input
- In the Gaussian case, where q_{ϕ} is a multivariate Gaussian vector, with mean μ and diagonal covariance matrix σ Id, this gives

$$z = \mu + \sigma \epsilon, \ \epsilon \sim \mathcal{N}(0, \mathsf{Id})$$

- μ and σ are produced by the encoder
- Thus, backpropagation can be carried out w.r.t to network parameters

loss = $||x - \hat{x}||^2 + KL[N(\mu_x, \sigma_x), N(0, I)] = ||x - d(z)||^2 + KL[N(\mu_x, \sigma_x), N(0, I)]$

† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Variational autoencoder in practice

• Let us take the following case, well-adapted to the mnist dataset :

- Prior : $p_{\theta}(z) \sim \mathcal{N}(0, \mathrm{Id})$
- Variational approximation : $q_{\phi}(z|x) \sim \mathcal{N}(\mu, \sigma \mathrm{Id})$, where $(\mu, \sigma) = \Phi_e(x)$
- Likelihood : $p_{\theta}(x|z) \sim Ber(y)$, where $y = \Phi_d(z)$

$$\mathcal{L} = \sum_{i=1}^{mn} x_i \log y_i + (1 - x_i) \log(1 - y_i) - \frac{1}{2} \sum_{j=1}^d \left(\mu_j^2 + \sigma_j^2 - 1 - \log\left(\sigma_j^2\right) \right)$$
KL divergence

• Some results of variational autoencoders on mnist data : random samples

```
2811385738
                                           8208933998
  17814828
              165164672
         319
              8 5
                9 4.
                   G
                    32162
                            8382198338
                                           7559
        ß
                                                1 1
                                                      94
                                                   7
              6103288133
                            3559239513
         179
                                           8962
                                                AB
                                                   28
                                                     29
     3
        q
                 6
                  8912941
                             1918933497
                                           19863
  \circ
   8
     6
      9
       1963
                                                 170
                                                     61
  з
   33313
          36
              51
                91015359
                             1736430263
                                           5
                                                8
                                                 97
                                                       n
   8
     616665
              6561491758
                            5970383845
                                           6820
                                                2
      51899
              1343923270
                            6943618572
   66
                                          258
                                                161
                                                    3
                                                      2 2
                            8490507365
  81312823
              4582970459
                                           7939299396
0461232088
              6194872895
                            7416303601
                                           4524390184
9754934881
              2645609998
                            2120431850
                                           R872516235
(a) 2-D latent space
               (b) 5-D latent space
                             (c) 10-D latent space
                                           (d) 20-D latent space
```

Auto-Encoding Variational Bayes, D. P. Kingma, M. Welling, arXiv preprint arXiv:1312.6114, 2013

• Some results of VAEs on mnist, face data : uniform samples

(a) Learned Frey Face manifold

Ch.

6666666666666666

00000

(b) Learned MNIST manifold

Auto-Encoding Variational Bayes, D. P. Kingma, M. Welling, arXiv preprint arXiv:1312.6114, 2013

Variational Autoencoders : summary

- Rigourous framework to autoencode data onto a probabilisitcally modelled latent space
- Advantages
 - Theoretically-motivated, loss function meaningful
 - Learn to and from mapping (encoder and decoder)
- Drawbacks
 - · Have to re-write loss function for each different model, not always easy
 - In practice, do not produce as complex examples as Generative Adversarial Networks

- The GAN contains only the decoder part of an autoencoder
 - The code z is explicitly sampled from a chosen distribution pz (contrary to the VAE)
- The decoder is referred to here as the "Generator"

- We suppose that the data in the databse follows a distribution pdata
- We want to make the distribution of y = G(z), p_G , similar to p_{data}^*

* Why can we not do this via the KL divergence as before ? Too high dimensionality (previously, we worked in the latent space)

Introduction to deep learning

- However, with no reconstruction error, how do we make x look like the data ?
- Answer : Train another network : a **Discriminator** D (or "Adversarial Network")

- However, with no reconstruction error, how do we make x look like the data ?
- Answer : Train another network : a **Discriminator** D (or "Adversarial Network")
- $D: \mathbb{R}^{mn} \to [0,1]$ is trained to identify "good" (or "true") examples of the data
- $G: \mathbb{R}^z \to \mathbb{R}^{mn}$ is trained to produce realistic data examples
- The two networks are trained at the same time, and each try to fool the other !

• The full GAN architecture looks like this

- The discriminator is a really interesting idea, why ?
- Reliable and powerful image/data models are difficult to establish
- It is difficult to say whether an image is "good" or not
 - The discriminator acts as a learned image norm !
- How is this is achieved ? Via a well-designed loss function

GAN loss

• Train generator G and the discriminator D in a minimax optimisation problem

D is trying to recognize true data $\mathbb{E}_{x \sim p_{data}}[\log D(x)]$

 $\min_{G} \max_{D}$

+ $\mathbb{E}_{z \sim p_z} \left[\log \left(1 - D(G(z)) \right) \right]$

G is trying to fool D, but D is trying not to be fooled

GAN loss

• Train generator *G* and the discriminator *D* in a minimax optimisation problem

 $\sum_{x} \frac{D \text{ is trying to recognize true data}}{\mathbb{E}_{x \sim p_{data}} [\log D(x)]} +$

 $\min_{G} \max_{D}$

+ $\mathbb{E}_{z \sim p_z} \left[\log \left(1 - D(G(z)) \right) \right]$

G is trying to fool D, but D is trying not to be fooled

- Minimisation w.r.t G
 - Second term is low, $\implies 1 D(G(z))$ is close to $0 \implies D$ is recognising G(z) as a true data example : G has fooled D

GAN loss

• Train generator G and the discriminator D in a minimax optimisation problem

D is trying to recognize true data $\underbrace{\mathbb{E}_{x \sim p_{data}} \left[\log D(x) \right]}_{\mathbb{E}_{x \sim p_{data}} \left[\log D(x) \right]}$

 $\min_{G} \max_{D}$

+ $\mathbb{E}_{z \sim p_z} \left[\log \left(1 - D(G(z)) \right) \right]$

G is trying to fool D, but D is trying not to be fooled

- Minimisation w.r.t G
 - Second term is low, $\implies 1 D(G(z))$ is close to $0 \implies D$ is recognising G(z) as a true data example : G has fooled D
- Maximisation w.r.t D
 - First term is high $\implies D(x)$ is close to 1 : D is learning to recognize true data
 - Second term is high $\implies 1 D(G(z))$ is close to 1 : D is not getting fooled by G

- At the beginning of the training, the examples from *G* are not very good : *D* can spot them easily
- At the end of training, the discriminator should not be able to tell the true data from the generated data : $p_G = p_{data}$. At this point $\mathcal{L}(G, D) = -\log(4)$
- Optimisation alternates between minimisation and maximisation steps

Here are some results of the original GAN paper*

- In the space of four years, these results have been vastly improved on
- There are many, many GAN variants. We present a few now

* Generative Adversarial Nets, Goodfellow et al, NIPS 2014

Conditional Generative Adversarial networks

- The Conditional GAN allows a label c to be added to the loss function
- It is then possible to generate examples of a given class

```
\min_{G} \max_{D} \left[ \log D(x|\mathbf{c}) \right] + \left[ \log \left( 1 - D(G(z|\mathbf{c})) \right) \right]
```

* Conditional Generative Adversarial Nets, Mirza, M. and Osindero, S., arXiv preprint arXiv:1411.1784, 2014

• Examples of results of Conditional GAN

* Conditional Generative Adversarial Nets, Mirza, M. and Osindero, S., arXiv preprint arXiv:1411.1784, 2014

- GANs have also been modified to carried out domain translation
- One of the most well-known networks is Pix-To-Pix[†]

[†] Image-to-Image Translation with Conditional Adversarial Nets, P Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, CVPR, 2017

 Instead of going from a random code to an image, the GAN learns to map one representation to another

• Can be used for tasks such as data augmentation, image inpainting

[†] Image-to-Image Translation with Conditional Adversarial Nets, P Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, CVPR, 2017

Denoising Diffusion Probabilistic Models (DDPM)

Consider a forward diffusion process which progressively adds noise

• reversing the process allows to generate new samples $x_0 \sim q(x)$ starting from white noise $x_T \sim \mathcal{N}(0, I)$

Deep unsupervised learning using nonequilibrium thermodynamics, Sohl-Dickstein, Jascha, et al., ICML 2015 Denoising diffusion probabilistic models, Ho, Jonathan, et al., NeurIPS 2020

Introduction to deep learning

Denoising Diffusion Probabilistic Models (DDPM)

Unconditional CIFAR10 progressive generation

Denoising diffusion probabilistic models, Ho, Jonathan, et al., NeurIPS 2020

Dalsasso E.

Introduction to deep learning

Outline

- Deep Feedforward Networks
 - Undestanding deep networks
 - Backpropagation and neural network training
- 2 Convolutional Neural Networks
 - Introduction, notation
 - Convolutional Layers
 - Down-sampling and the receptive field
 - Applications of CNN's

Recurrent Neural Networks for Sequence Modeling

- Autoencoders and Generative Models
 - Autoencoders
 - Generative Models

Conclusion

From Deep Learning to the Earth Sciences

Opportunities

- Analogies between the types of data addressed with classical deep learning
 - Images \rightarrow 2-D data fields
 - Videos \rightarrow 2-D data fields evolving in time
 - Naural language speech signals \rightarrow Dynamic time-series of Earth system variables
- Tasks such as classification, regression, anomaly detection, and dynamic modeling are typical problems in both computer vision and geosciences

Challenges

- RGB Images ≠ Hyperspectral images
- Variables are often not i.i.d.
- How to integrate multi-modal data?
 - Geometry
 - Temporal / Spatial resolution
- Sources of noise
- No benchmark: many unlabeled data → Self-Spervised Learning (SSL)

Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019

From Machine Learning to Earth Sciences

These slides are inspired to the Deep Learning course of **Nicolas Thome** and the Convolutional Neural Network course of **Alasdair Newson**. Many thanks!

† Illustration from Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019

Convolutional Layers

Properties of convolution

- Associativity : (f * g) * h = f * (g * h)
- 2 Commutativity : f * g = g * f
- $\textbf{ Silinearity : } (\alpha f) * (\beta g) = \alpha \beta (f * g), \text{ for } (\alpha, \beta) \in \mathbb{R} \times \mathbb{R}$
- Sequivariance to translation : $(f * (g + \tau))(t) = (f * g)(t + \tau)$

Convolutional Layers

Associativity, commutativity

- Associativity+commutativity implies that we can carry out convolution in any order
- There is no point in having two or more consecutive convolutions
 - This is true in fact for any linear map

Equivariance to translation

- Equivariance implies that the convolution of any shifted input $(f + \tau) * g$ contains the same information as $f * g^{\dagger}$
- This is useful, since we want to detect objects anywhere in the image

[†] if we forget about border conditions for a moment

Convolutional Layers

- Note : optimisation of loss w.r.t one parameter w_k involves entire image
- Weights are "shared" across the entire image
- This notion of weight sharing is one of the main justifications of using CNNs
- In practice, we do not calculate dw_k and dx_k ourselves, we use the **automatic differentiation** tools of Tensorflow, Pytorch etc.

2D+feature convolution

- Several filters are used per layer, let us say K filters : $\{w_1, \ldots, w_K\}$
- The resulting vectors/images are then stacked together to produce the next layer's input $u^{\ell+1} \in \mathbb{R}^{m \times n \times K}$

$$u^{\ell+1} = [u * w_1, \dots, u * w_K]$$

• Therefore, the next layer's weights must have a depth of *K*. The 2D convolution with an image of depth *K* is defined as

$$(u*w)_{y,x} = \sum_{i,j,k} u(i,j,\mathbf{k}) w(y-i,x-j,\mathbf{k})$$

Useful explanation: https://towardsdatascience.com/ a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Convolutional layers

Illustration of several consecutive convolutional layers with different numbers of filter

- Each layer contains "image" with a depth, where each channel corresponds to a different filter response
- Each layer is a concatenation of several features : rich information

Useful explanation : https://towardsdatascience.com/ a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Convolutional layers - a note on Biases

- A note on biases in neural networks : each output layer is associated with one bias
- There is not one bias per pixel
- This is coherent with the idea of weight sharing (bias sharing)

The Receptive Field

- The region of the image which an individual filter responds to is known as the "receptive field" of that filter
- The receptive field of a deep networks corresponds to that of the filters contained in the last layer

Illustration from : Applied Deep Learning, Andrei Bursuc, https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_7/

Denoising autoencoder

- Naive autoencoder may lead to overfitting, poor robustness and difficulty to interpret the latent space
- We would like to make the encoder/decoder robust to small perturbations in the input data
- One solution : the denoising autoencoder

Denoising autoencoder

Idea : add noise η to the input

$$\mathcal{L}(x) = \|\Phi_d \circ \Phi_e(x + \boldsymbol{\eta}) - x\|_2^2$$

Autoencoders

• Example of autoencoder use : interpolation of complex data

Interpolation of complex data[†]

[†] Generative Visual Manipulation on the Natural Image Manifold, J-Y. Zhu, P. Krähenbühl, E. Schechtman, A. Efros, CVPR 2016