
Traitement des données massives et apprentissage
École d’été, 5-9 juin 2023

Introduction to deep learning and neural networks

Emanuele Dalsasso (CÉDRIC, CNAM, Paris)

June, 2023



Context leading to deep learning rise

Big Data
Explosion of data availability: images, videos, audio, text, etc

Sources: Media, Social Networks, Open data policies for commercial and/or scientific purposes

Digital data Biomedical instruments Remote Sensing sensors

Need to access, search, analysis, visualise, classify these data

Huge number of applications: medicine, economy, science etc

Leading track in major ML/CV conferences during the last decade
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Context leading to deep learning rise

Visual Recognition: archetype of low-level signal understanding

Supposed to be a master class problem in the early 80’s
Certainly the most impacted topic by deep learning

Scene categorization
Object localization
Context & Attribute recognition
Rough 3D layout, depth ordering
Rich description of scene, e.g. sentences

Example of Semantic Segmentation in Earth Observation† Example of Visual Question Answering in Remote Sensing‡
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† Illustration from Semi-Supervised Semantic Segmentation in Earth Observation: The MiniFrance suite, dataset analysis and multi-task network
study, Castillo-Navarro, Javiera, et al., Machine Learning 2021
‡Illustration from RSVQA: Visual question answering for remote sensing data, Lobry, Sylvain, et al., IEEE TGRS 2020



Deep Learning (DL) & Recognition of low-level signals

DL: breakthrough for the recognition of low-level signal data
Before DL: handcrafted intermediate representations for each task

	 Needs expertise (PhD level) in each field
	Weak level of semantics in the representation
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Deep Learning (DL) & Recognition of low-level signals

DL: breakthrough for the recognition of low-level signal data
Since DL: automatically learning intermediate representations

⊕ Outstanding experimental performances >> handcrafted features
⊕ Able to learn high level intermediate representations
⊕ Common learning methodology⇒ field independent, no expertise
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From Machine Learning to Earth Sciences
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† Illustration from Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019
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The origins

History
1943: The formal neuron [McCulloch and Pitts, 1943]
1958: First perceptron [Rosenblatt, 1958]
1974: Backpropagation algorithm [Werbos, 1974]
1980: First deep feedforward network [Fukushima, 1980]
1989: First convolutional neural network [LeCun et al., 1989]

The formal neuron, basis of deep feedforward neural networks

x1

x2

xm

...

Σ

b

ŷ1
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Figure: The formal neuron – Credits: R. Herault

xi: inputs
wi, b: weights and biases
f : activation function
y: output of the neuron

y = f(w>x+ b)
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Example: Learning XOR

The XOR function

y = f?(x) = x1 ⊕ x2

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Single perceptron
Define MSE loss function to learn
parameters θ of fθ(x):

L =
1

4

4∑
i=1

(f?(xi)− fθ(xi))
2

Linear model defined by

fw,b(x) = xTw + b

The solution gives w = 0 and b = 1
2

:
fw,b(x) = 1

2

Data are not linearly separable
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Example: Learning XOR

The XOR function

y = f?(x) = x1 ⊕ x2

x1 x2 y
0 0 0
0 1 1
1 0 1
1 1 0

Multi-layer perceptron
Define MSE loss function to learn
parameters θ of fθ(x):

L =
1

4

4∑
i=1

(f?(xi)− fθ(xi))
2

Define different feature space where the
linear model is able to represent the solution

Nonlinear model defined by

f(x)(W,b,w,b) = wT max{0,WTx+b}+b

The solution gives W =

[
1 1
1 1

]
,

b =

[
0
−1

]
, w =

[
1
−2

]
and b = 0, which

perfectly fits with data

Dalsasso E. Introduction to deep learning 5th June 2023 8 / 101



Learning XOR

Two ways of representing a perceptron

with 1 hidden layer

The rectified linear unit ReLU activation

function

Single perceptron can only represent linear
functions (linear regression, logistic
regression):

f(x)(w,b) = xTw + b

Represent nonlinear functions by apply linear
model to a nonlinear transformation of the input
x:

f(x)(W,b,w,b) = wT max{0,WTx + b}+ b

⇒ learn XOR by breaking it down to OR,
NAND and AND
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Illustrations from Deep learning, Goodfellow, Ian, Yoshua Bengio, and Aaron Courville, MIT press, 2016.



Deep Feedforward Networks

Perceptron with 1 hidden layer – Credits: R. Herault

Stacking more layers, toward “deep learning” –

Credits: M. Nielsen

Feedforward: flow of information from x to y

Neural: ispired by neuroscience. The
elementary element is called neuron
Network: stack of several different functions
(layers). For instance:

y = f(x) = f(3)(f(2)(f(1)(x))))
The length of the chain gives the depth (deep
learning): different levels of abstraction from
low-level features to the high-level ones
f(3) is the output layer
f(1) and f(2) are hidden layers

Activation functions (nonlinearities): ReLU,
Sigmoid, Tanh, Softmax, ..
⇒ Build universal function approximators from
simple components
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The Multi-Layer Perceptron (MLP)

Basis of the “deep learning” field

Principle: Stacking layers of neural networks to allow more complex and rich functions

Can be seen as different levels of abstraction from low-level features to the high-level ones
Neural network with one single hidden layer⇒ universal approximator [Cybenko, 1989]

Ex for classification: any decision boundaries can be expressed
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Training Multi-Layer Perceptron (MLP)

Input x, output y

A parametrized model x⇒ y: fw(xi) = ŷi

Supervised context: training set A =
{

(xi,y
∗
i )
}
i∈{1,2,...,N}

A loss function `(ŷi,y∗i ) for each annotated pair (xi,y
∗
i )

Assumptions: parameters w ∈ Rd continuous, L differentiable

Gradient ∇w = ∂L
∂w

: steepest direction to decrease loss L
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MLP Training

Gradient descent algorithm:
Initialyze parameters w

Update: w(t+1) = w(t) − η ∂L∂w

Until convergence, e.g. ||∇w||2 ≈ 0
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MLP Training: loss function

Input xi, ground truth output supervision y∗i
One hot-encoding for y∗i :

y∗c,i =

{
1 if c is the groud truth class for xi
0 otherwise
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MLP Training

Loss function: multi-class Cross-Entropy (CE) `CE
`CE : Kullback-Leiber divergence between y∗i and ŷi

`CE(ŷi,y
∗
i ) = KL(y∗i , ŷi) = −

K∑
c=1

y∗c,ilog(ŷc,i) = −log(ŷc∗,i)
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MLP Training: Backpropagation

LCE(W,b) = 1
N

N∑
i=1

`CE(ŷi,y
∗
i ) = − 1

N

N∑
i=1

log(ŷc∗,i)

`CE smooth convex upper bound of `0/1
⇒ gradient descent optimization

Gradient descent: W(t+1) = W(t) − η ∂LCE
∂W

(b(t+1) = b(t) − η ∂LCE
∂b

)

Computing ∂LCE
∂W

= 1
N

N∑
i=1

∂`CE
∂W

?

⇒ Backpropagation of gradient error!

⇒ Key Property: chain rule
∂x

∂z
=

∂x

∂y

∂y

∂z
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Chain Rule

∂`
∂x

= ∂`
∂ŷ

∂ŷ
∂x

Logistic regression:
∂`CE
∂W

= ∂`CE
∂ŷi

∂ŷi

∂si

∂si
∂W
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Deep Neural Network Training: Backpropagation

Multi-Layer Perceptron (MLP): adding more hidden layers

Backpropagation update ∼ application of chain rule recursively through all network layers
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Neural Network Training: Optimization Issues

Classification loss over training set (w):

LCE(w) =
1

N

N∑
i=1

`CE(ŷi,y
∗
i ) = −

1

N

N∑
i=1

log(ŷc∗,i)

Gradient descent optimization:

w(t+1) = w(t) − η
∂LCE
∂w

(
w(t)

)
= w(t) − η∇(t)

w

Gradient ∇(t)
w = 1

N

N∑
i=1

∂`CE(ŷi,y
∗
i )

∂w

(
w(t)

)
linearly scales wrt:

w dimension
Training set size

⇒ Too slow even for moderate dimensionality & dataset size!
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Stochastic Gradient Descent

Solution: approximate ∇(t)
w = 1

N

N∑
i=1

∂`CE(ŷi,y
∗
i )

∂w

(
w(t)

)
with subset

⇒ Stochastic Gradient Descent (SGD)
Use a single example (online):

∇(t)
w ≈

∂`CE(ŷi,y
∗
i )

∂w

(
w(t)

)
Mini-batch: use B < N examples (avoids redundancy):

∇(t)
w ≈

1

B

B∑
i=1

∂`CE(ŷi,y
∗
i )

∂w

(
w(t)

)

Full gradient SGD (online) SGD (mini-batch)
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Stochastic Gradient Descent

SGD: approximation of the true Gradient ∇w !
Noisy gradient can lead to bad direction, increase loss
BUT: much more parameter updates: online ×N , mini-batch ×NB
Faster convergence, at the core of Deep Learning for large scale datasets

Full gradient SGD (online) SGD (mini-batch)
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Optimization: Learning Rate Decay

Gradient descent optimization: w(t+1) = w(t) − η∇(t)
w

η setup ? ⇒ open question
Learning Rate Decay: decrease η during training progress

Inverse (time-based) decay: ηt =
η0

1+r·t , r decay rate
Exponential decay: ηt = η0 · e−λt

Step Decay ηt = η0 · r
t
tu ...

Exponential Decay (η0 = 0.1, λ = 0.1s) Step Decay (η0 = 0.1, r = 0.5, tu = 10)
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Generalization and Overfitting

Learning: minimizing classification loss LCE over training set
Training set: sample representing data vs labels distributions
Ultimate goal: train a prediction function with low prediction error on the true (unknown) data
distribution

Ltrain = 4, Ltrain = 9 Ltest = 15, Ltest = 13

⇒ Optimization 6= Machine Learning!
⇒ Generalization / Overfitting!
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Regularization

Regularization: improving generalization, i.e. test (6= train) performances

Structural regularization: add Prior R(w) in training objective:

L(w) = LCE(w) + αR(w)

L2 regularization: weight decay, R(w) = ||w||2
Commonly used in neural networks
Theoretical justifications, generalization bounds (SVM)

Other possible R(w): L1 regularization, dropout, etc
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Regularization and hyper-parameters

Neural networks: hyper-parameters to tune:
Training parameters: learning rate, weight decay, learning rate decay, # epochs, etc
Architectural parameters: number of layers, number neurones, non-linearity type, etc

Hyper-parameters tuning:⇒ improve generalization: estimate performances on a validation
set
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Introduction to CNN

In MLPs each layer of the network contained fully connected layers

Unfortunately, there are great drawbacks with such an approach

Fully connected 
layer

256

256

1000

Each hidden unit is connected to each input unit
There is high redundancy in these weights :

In the above example, 65 million weights are required
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Introduction to CNN

For many types of data with grid-like topological structures (eg. images), it is not
necessary to have so many weights

For these data, the convolution operation is often extremely useful
Reduces the number of parameters to train

Training is faster
Convergence is easier : smaller parameter space

A neural network with convolution operations is known as a Convolutional Neural Network
(CNN)
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Introduction - some history

“Neocognitron” of Fukushima∗ : first to incorporate notion of receptive field into a neural
network, based on work on animal perception of Hubert and Weisel†

Yann LeCun first to propose back-propagation for training convolutional neural networks‡

Automatic learning of parameters instead of hand-crafted weights
However, training was very long : required 3 days (in 1990)

In the years 1998-2012, research continued on shallow and deep neural networks, but other
machine learning approaches were preferred (GMMs, SVMs etc.)
In 2012, Alex Krizhevsky et al. used Graphics Processing Units (GPUs) to carry out
backpropagation on a very deep convolutional neural network

Greatly outperformed classic approaches in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC)
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∗ Neocognitron: A Self-organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position, Fukushima, K.,
Biological Cybernetics, 1980
† Receptive fields and functional architecture of monkey striate cortex, Hubel, D. H. and Wiesel, T. N, 1968
‡ Backpropagation Applied to Handwritten Zip Code Recognition, LeCun, Y. et al., AT&T Bell Laboratories



Introduction - some history

Since 2012, CNNs have completely revolutionised many domains

CNNs produce competetive/best results for most problems in image processing and computer
vision

Applications of deep learning

Medical imaging

Image classification

Computer graphics

From AtlasNet, Groueix et al, CVPR, 2018

Image style transfer

Automatic speech recognition

Image restoration

Medical Image Classification with Convolutional
Neural Network, Li et al., ICARCV, 2014

A Neural Algorithm of Artistic 
Style, Gatys et al, CVPR 2015

Medical Image Classification with Convolutional
Neural Network, Li et a., ICARCV, 2014

Being applied to an ever-increasing number of problems
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Introduction - some notation

Notations
x ∈ Rn : input vector

y ∈ Rq : output vector

u` : feature vector at layer `

θ` : network parameters at layer `

Neural network with L layers

Dalsasso E. Introduction to deep learning 5th June 2023 31 / 101



Introduction

A “Convolutional Neural Network” (CNN) is simply a concatenation of :
1 Convolutions (filters)
2 Additive biases
3 Down-sampling (“Max-Pooling” etc.)
4 Non-linearities
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Convolutional Layers

Convolution operator
Let f and g be two integrable functions. The convolution operator ∗ takes as its input two such
functions, and outputs another function h = f ∗ g, which is defined at any point t ∈ R as :

h(t) = (f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ)dτ.

Intuitively, the function h is defined as the inner product between f and a shifted version of g
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Convolutional Layers

In many practical applications, in particular for CNNs, we use the discrete convolution
operator, which acts on discretised functions;

Discrete convolution operator
Let fn and gn be two summable series, with n ∈ Z. The discrete convolution operator is defined
as :

(f ∗ g)(n) =

+∞∑
i=−∞

f(i)g(n− i)

Intuitively, the function h is defined as the inner product between f and a shifted version of g

In practice, the filter is of small spatial support, around 3× 3, or 5× 5

Therefore, only a small number of parameters need to be trained (9 or 25 for these filters)
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Convolutional Layers - 2D Convolution

Most often, we are going to be working with images
Therefore, we require a 2D convolution operator : this is defined in a very similar manner to
1D convolution :

2D convolution operator

(f ∗ g)(s, t) =

+∞∑
i=−∞

+∞∑
j=−∞

f(i, j)g(s− i, t− j)

We are going to denote the filters with w
For lighter notation, we write w(i) =: wi (and the same for xi etc.)
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Convolutional Layers : Visual Illustration
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Convolutional Layers : Visual Illustration
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Convolutional Layers

The filter weights wi determine what type of “feature” can be detected by convolutional layers;

Example, sobel filters :

Horizontal edge -1 -2 -1
0 0 0
1 2 1


Vertical edge -1 0 1

-2 0 2
-1 0 1


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Convolutional Layers

Convolutional filters can also act as low-pass/smoothing filters

Input image Low-pass filtered image

Dalsasso E. Introduction to deep learning 5th June 2023 38 / 101



Convolutional Layers

We can also write convolution as a matrix/vector product, as in the case of fully connected
layers

Example : discrete Laplacian operator

w =

 0 −1 0
−1 4 −1
0 −1 0

 → Aw = K

y

n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

4 −1
0· · · −1

0· · ·
−1 4 −1

0· · · −1
0· · ·

0 −1 4 −1
0· · · −1

0· · ·
. . .

. . .
. . .

. . .
. . .

. . .

−1
0· · · −1

0· · · −1 4



This further illustrates the drastic reduction in weight parameters (9 instead of Kn)

Can be useful to view convolution in this manner→ Backpropagation
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Convolutional Layers

At this point, it is good to have a more “neural network”-based illustration of CNNs

...

...

We can see the main justifications for CNNs
1 Sparse connectivity
2 Weight sharing
3 Equivariance to translation

optimization of a neural network with convolutional layers through back-propagation
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Convolutional Layers

In many cases, we are primarily interested in detection;

We would like to detect objects wherever they are in the image

Formally, we would like to have some shift invariance property;
This is done in CNNs by using subsampling, or some variant :

Strided convolutions
Max pooling

We explain these now
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The Receptive Field

The region of the image which an individual filter responds to is known as the “receptive field”
of that filter

The receptive field of a deep networks corresponds to that of the filters contained in the last
layer
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Illustration from: Deep learning book, Goodfellow, I., Bengio, Y., & Courville, A., MIT Press 2016,
https://www.deeplearningbook.org/slides/09_conv.pdf/
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Strided convolution

Strided convolution is simply convolution, followed by subsampling

Subsampling operator (for 1D case)
Let x ∈ Rn. We define the subsampling step as δ > 1, and the subsampling operator
Sδ : Rn → R

n
δ , applied to x, as

Sδ(x) (t) = x(δt), for t = 0 . . .
n

δ
− 1
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Max pooling

Max pooling subsampling consists in taking the maximum value over a certain region

This maximum value is the new subsampled value

We will indicate the max pooling operator with Sm

max (
(
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Max pooling

Back propagation of max pooling only passes the gradient through the maximum

10

15 30

80

80

Max pooling Back propagation

0

0 0
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Down-sampling

Conclusion : cascade of convolution, non-linearities and subsampling produces
shift-invariant classification/detection

We can detect Roger wherever he is in the image !

Convolution + non-linearity +max pooling

✓ ✓ ✓ ✓
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How to build your CNN ?

How to build your CNN ?
We have looked at the following operations : convolutions, additive biases, non-linearities

All of these elements make up convolutional neural networks

However, how do we put these together to create our own CNN ?
Programming tools ? Pytorch, Tensorflow,..
Datasets ?
Architecture ?
Loss function ?
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Main datasets

MNIST dataset: 60,000
28× 28 pixel grey-level
images containing
hand-written digits. “simple”
dataset, still used to display
performance of modern
CNNs

Caltech 101: recongnition
dataset. 9,146 images, 101
object categories, each
category contains between
40 and 800 images

ImageNet: 14,197,122
images, hand-annotated.
Used for the ImageNet Large
Scale Visual Recognition
Challenge, an annual
benchmark competition for
object recognition algorithms
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Image classification

We have input datapoints x, which we wish to classify into several, predefined classes
{ci}, i = 1 . . .K, where K is the number of classes

As we have seen, convolution, non-linearities, subsampling allow for robust classification that
is invariant to many perturbations

Vast majority of CNN classification networks follow this general architecture and use the
following Cross-Entropy loss function:

LCE = −
K∑
i=1

yci log ŷci , ŷci = Softmax(zci ) =
ezci∑K
i=1 e

zci
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Image classification

We can also detect the position of objects in images
RNN∗ proposes a simple approach :

1 Propose a list of bounding boxes in the image
2 Pass the resized sub-images through a powerful classification network
3 Classify each sub-image with your favourite classifier

Many variants on this work (Fast R-NN, Faster R-CNN) etc.
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∗ Rich feature hierarchies for accurate object detection and semantic segmentation, Girschik, R. et al. CVPR 2014



Image classification

Image segmentation is a particular case of image classification, where a label is assigned to
each image pixel
Most of architectures are based on U-Net∗

1 Pooling layers to encode image semantic
2 Residual (or skip) connections allow the flow of information to preserve fine details from the input

image
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∗ U-net: Convolutional networks for biomedical image segmentation, Ronneberger, Olaf, et al.,MICCAI 2015



Image denoising

Goal: reconstruct the clean signal x from a
noisy measurement y = x + n, with n
being the noise

Achieved by mimizing the distance between
fθ(y) and x for each image pixel indexed
by i:

L2 =
∑
i

‖fθ(yi)− xi‖2

L1 =
∑
i

‖fθ(yi)− xi‖

+

Majority of architectures employ a residual learning strategy∗
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∗Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising, Zhang, Kai, et al., IEEE TIP 2017



Super-resolution

Image super-resolution : go from a low-resolution image to a higher-resolution one

Relatively straightforward approach with a CNN∗

Drawback, highly dependent on degradation used in lower-resolution images in database
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∗ Learning a deep convolutional network for image super-resolution, Chao et al, ECCV 2014



Motion estimation

Motion estimation is a central task for many image processing and computer vision
problems : tracking, video editing

Optical flow involves estimating a vector field (u, v) : R2 → R2 where each vector points to
the displacement of pixel (x, y) from an image I1 to I2

I1(x, y) = I2(x+ u(x, y), y + v(x, y))

Optical flow
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Illustration from : BriefMatch: Dense binary feature matching for real-time optical flow estimation, Eilertsen, G, Forssén, P-E, Unger, J., Scandinavian
Conference on Image Analysis, 2017



Image classification

Attention mechanism in image networks
Attention mechanism originally developed in RNNs : addresses problem of long range
dependency

→Networks exist with attention only : transformer∗

Also used in image network architectures (usually self-attention)

Attention(Q,K, V ) = Softmax(QKT )V

This equation says that the attention is a weighted version of V

The weights are given by a softmax of the dot products between patches in Q and those in K
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∗Attention is all you need, Vaswani et al, NIPS, 2017



Image classification

Attention mechanism in image networks

?Q

K K

K
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∗Attention is all you need, Vaswani et al, NIPS, 2017



Image classification

Attention mechanism in image networks
Combined attention/convolution archtictures present the best accuracies on ImageNeT (to
date∗)

CoAt-Net7: 90.88% accuracy on ImageNet
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∗https://paperswithcode.com/sota/image-classification-on-imagenet



Adversarial examples

We often get the impression that CNNs are the end all and be all of AI

Consistently produce state-of-the-art results on images

However, CNNs are not infallible : adversarial examples† !

How was this image created ???
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† Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013



Adversarial examples

We often get the impression that CNNs are the end all and be all of AI

Consistently produce state-of-the-art results on images

However, CNNs are not infallible : adversarial examples† !

Szegedy et al. propose‡ add a small perturbation r that fools the classifier network f into
choosing the wrong class c for x̂ = x+ r

arg min
r
|r|22, s.t f(x+ r) = c, x+ r ∈ [0, 1]n

x̂ is the closest example to x s.t x̂ is classified as in class c

Minimisation with box-constrained L-BFGS algorithm
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† Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013
‡ Intriguing properties of neural networks, Szegedy, C. et al, arXiv preprint arXiv:1312.6199, 2013



Adversarial examples

Common explanation : the space of images is very high-dimensional, and contains many
areas that are unexplored during training time

Example of loss surfaces in commonly used networks (Res-Nets)
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Illustration from Visualizing the Loss Landscape of Neural Nets, Li, H et al, NIPS, 2018



Summary

CNNs represent the state-of-the art in many different domains/problems

If you have an unsolved problem, there is a good chance CNNs will produce a good/excellent
result

However : theoretical understanding is still relatively limited
This leads to problems such as adversarial examples
It is not clear whether CNNs are truly robust/generalisable
This is a hot research topic, important if CNNs are to be used in industrial applications
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Context

CNNs are designed to capture spatial relationships for matrix-like data

Signals that evolves through time are modeled as sequences

Example of Earth observation sequential data† Example of spectrogram of an audio signal

Visual Question Answering in Remote Sensing‡
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† Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences,
Camps-Valls, Gustau, et al., John Wiley & Sons, 2021.
‡Illustration from Toward a collective agenda on ai for earth science data analysis, Tuia, Devis, et al., IEEE GRSM 2021



Context

Deep Feedforward Network can process single elements or fixed-length sequences

y = f(xt) or y = f(xt,xt−1, . . . ,xt−p)

Single-time and multi-time feedforward neural networks†

→ They fail to dynamically capture the temporal context: Recurrent Neural Networks
(RNNs) do that: y = f({xt}τt=0)

Structure of a recurrent neural network‡
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† Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences,
Camps-Valls, Gustau, et al., John Wiley & Sons, 2021.
‡ Illustration from http://ai.stanford.edu/~quocle/tutorial2.pdf

http://ai.stanford.edu/~quocle/tutorial2.pdf


Recurrent Neural Networks

Relaxation of Feedforward Neural Networks to allow feedback loops
→ allows to process sequences of variable lenght

Backpropagation is not directly applicable due to feedback loops
→ RNN can be reformulated as Deep Feedforward Networks

An unrolled recurrent neural network†

Layers correspond to individual times
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† Illustration from http://ai.stanford.edu/~quocle/tutorial2.pdf

http://ai.stanford.edu/~quocle/tutorial2.pdf


Recurrent Neural Networks training

RNN elements:
W : input hidden weights
U : hidden to hidden weigths
V : hidden to label weigths
ht: hidden state

Structure of a recurrent neural network†

f(x) = V hT

ht = σ(Uht−1 +Wxt), for t = T, . . . , 1

h0 = σ(Wx0)

Backpropagation through T layers involves multiplying ×T the shared weights matrix
→ Exploding or Vanishing Gradient problem1,2
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† Illustration from http://ai.stanford.edu/~quocle/tutorial2.pdf
1 Long short-term memory., Hochreiter, Sepp, and Jürgen Schmidhuber, Neural computation, 1997
2 Learning long-term dependencies with gradient descent is difficult. Bengio, Yoshua et al., IEEE transactions on neural networks, 1994
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Gated Variants of RNNs

The most popular variant of RNNs are Long Short-Term Memory (LSTM) networks

Composed by several gates controlling the information flow

The "memory" c can allow the gradient to pass through without vanishing
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† Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences,
Camps-Valls, Gustau, et al., John Wiley & Sons, 2021



Gated Variants of RNNs

→ LSTM retrieves long-term temporal context to predict future states
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† Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences,
Camps-Valls, Gustau, et al., John Wiley & Sons, 2021



Gated Variants of RNNs

LSTM are better at modeling temporal relationships than CNN

Crop classification accuracy†

However, CNN can capture the spatial context
→ To account for spatio-temporal relationships, architectures combining CNNs and LSTM
have been proposed

Convolutional LSTM Network‡

Dalsasso E. Introduction to deep learning 5th June 2023 68 / 101

† Illustration from Deep learning for the Earth Sciences: A comprehensive approach to remote sensing, climate science and geosciences,
Camps-Valls, Gustau, et al., John Wiley & Sons, 2021
‡ Illustration from Convolutional LSTM network: A machine learning approach for precipitation nowcasting, Shi, Xingjian, et al., NeurIPS 2015.



Transformers

The sequential nature of RNNs precludes parallelization within training examples: critical for
long sequences

Transformer architecture∗ relies entirely on attention mechanism to derive global
dependences between input and oputput

Every position in the decoder attends over all positions in the input sequence

Led to the development of Large Language Models
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∗Attention is all you need, Vaswani et al, NIPS, 2017
Illustration from Transformers in vision: A survey, Khan, Salman, et al., ACM computing surveys (CSUR) 2022



Applications of RNNs and Transformer networks

Language Modeling

Speech Recognition

Music Generation/Synthesis

Precipitation Nowcasting

Crop classification

Examples of problems where data are modeled as sequences†

Ocean Wind speed estimation with transformers‡
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†Illustration from Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019
‡Illustration from DDM-Former: Transformer networks for GNSS reflectometry global ocean wind speed estimation, Zhao et al, Remote Sensing of
Environment, 2023
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Introduction to autoencoders

Neural networks are often used for :
Classification/detection (MLPs, CNNs)
Modelling time-series, sequences (RNNs)

All of these networks rely on the extraction of features to analyse data

Idea : the network’s internal representation of the data can be useful !

Autoencoders and more generally generative models use this idea
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Autoencoders

Autoencoders consist of two networks : an encoder and a decoder
Encoder : map data x to a smaller latent space
Decoder : map point z back from latent space to original data space

Main idea : the latent space is a space where it is easier to manipulate/understand data

More powerful and compact representation of data

Encoder Decoder

Autoencoder
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Autoencoders

The autoencoder is trained to minimise some norm between the input x and the output y of
the decoder

In almost all cases, we have d << mn

This forces the autoencoder to learn a compact and powerful latent space

Encoder Decoder

Autoencoding training minimisation problem

L(x) = ‖y − x‖22

=
m∑
i

n∑
j

(
(Φd ◦ Φe(x))i,j − xi,j

)2
Put simply : output should look like input !
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Autoencoders

Uses of autoencoders :
Data compression, dimensionality reduction

Classification (easier in latent space)

Data generation/synthesis

Encoder Decoder
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Generative models

In many applications, it is desirable to synthesise data
Video post-production
Data augmentation
Imrove performances of simulators
Domain adaptation

Several types of generative models exist :
Restricted Bolzmann machines, Deep Belief models
Variational autoencoders
Generative Adversarial Networks;
Diffusion models;

The common idea in these models is the internal representation/latent space of the
network
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Generative models

Modern generative models produce highly realistic, (relatively) high-definition images

Synthesis examples from “Real NVP”†

Before, let us take a step back to autoencoders
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† Density estimation using Real NVP, L. Dinh, J. Sohl-Dickstein, S. Bengio, arXiv:1605.08803 2016



Variational autoencoder

Suppose we want to produce random examples of data, how would we go about this ?

We can model the latent space in a probabilistic manner

Synthesis will then consist of :
1 Sampling in the latent space
2 Decoding to produce the random image

Probabilistic model in latent space Synthesis of random image

Decoding
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Variational autoencoders - data generation

An autoencoder with its loss function†

What is the link between autoencoders and sample generation?
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† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational autoencoders - data generation

Generate new examples by sampling into the latent space

The quality of generated data depends on the regularity of the latent space
→Enforce regularity with a probabilistic approach
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† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Variational autoencoders - a probabilistic approach

Regularize the training of an autoencoder to avoid overfitting and ensure that the latent space
has a specific organization

The latent space distribution is often chosen to be Normal

Regularization is enforced by an additional loss function based on the Kullback-Leibler
divergence between the latent space distribution and the Normal distribution
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† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational autoencoders - a probabilistic approach

VAE loss function is the sum of a Reconstruction error and a Regularization term eforcing
the chosen prior distribution on the latent space
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† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational Autoencoder

There remains one more important detail : how to backpropagate through samples of z ?
Random variable, not differentiable

Solution : “reparametrisation trick”, make the random element an network input

In the Gaussian case, where qφ is a multivariate Gaussian vector, with mean µ and diagonal
covariance matrix σId, this gives

z = µ+ σε, ε ∼ N (0, Id)

µ and σ are produced by the encoder

Thus, backpropagation can be carried out w.r.t to network parameters
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† Illustration from https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Variational autoencoder in practice

Let us take the following case, well-adapted to the mnist dataset :
Prior : pθ(z) ∼ N (0, Id)
Variational approximation : qφ(z|x) ∼ N (µ, σId), where (µ, σ) = Φe(x)
Likelihood : pθ(x|z) ∼ Ber(y), where y = Φd(z)

L =

Reconstruction error︷ ︸︸ ︷
mn∑
i=1

xi log yi + (1− xi) log(1− yi)−
1

2

d∑
j=1

(
µ2
j + σ2

j − 1− log
(
σ2
j

))
︸ ︷︷ ︸

KL divergence

Dalsasso E. Introduction to deep learning 5th June 2023 83 / 101



Variational autoencoder results

Some results of variational autoencoders on mnist data : random samples
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Auto-Encoding Variational Bayes, D. P. Kingma, M. Welling, arXiv preprint arXiv:1312.6114, 2013



Variational autoencoder results

Some results of VAEs on mnist, face data : uniform samples
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Auto-Encoding Variational Bayes, D. P. Kingma, M. Welling, arXiv preprint arXiv:1312.6114, 2013



Variational autoencoder

Variational Autoencoders : summary
Rigourous framework to autoencode data onto a probabilisitcally modelled latent space

Advantages
Theoretically-motivated, loss function meaningful
Learn to and from mapping (encoder and decoder)

Drawbacks
Have to re-write loss function for each different model, not always easy
In practice, do not produce as complex examples as Generative Adversarial Networks
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Generative Adversarial networks

The GAN contains only the decoder part of an autoencoder
The code z is explicitly sampled from a chosen distribution pz (contrary to the VAE)

The decoder is referred to here as the “Generator”

We suppose that the data in the databse follows a distribution pdata
We want to make the distribution of y = G(z), pG, similar to pdata∗
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∗ Why can we not do this via theKL divergence as before ? Too high dimensionality (previously, we worked in the latent space)



Generative Adversarial networks

However, with no reconstruction error, how do we make x look like the data ?

Answer : Train another network : a Discriminator D (or “Adversarial Network”)

D : Rmn → [0, 1] is trained to identify “good” (or “true”) examples of the data

G : Rz → Rmn is trained to produce realistic data examples

The two networks are trained at the same time, and each try to fool the other !
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Generative Adversarial networks

The full GAN architecture looks like this
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Generative Adversarial networks

The discriminator is a really interesting idea, why ?

Reliable and powerful image/data models are difficult to establish

It is difficult to say whether an image is “good” or not
The discriminator acts as a learned image norm !

How is this is achieved ? Via a well-designed loss function
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Generative Adversarial networks

GAN loss
Train generator G and the discriminator D in a minimax optimisation problem

min
G

max
D

D is trying to recognize true data︷ ︸︸ ︷
Ex∼pdata [logD(x)] + Ez∼pz [log (1−D(G(z)))]︸ ︷︷ ︸

G is trying to fool D,
but D is trying not to be fooled

Minimisation w.r.t G

Second term is low, =⇒ 1−D(G(z)) is close to 0 =⇒ D is recognising G(z) as a true data
example : G has fooled D

Maximisation w.r.t D

First term is high =⇒ D(x) is close to 1 : D is learning to recognize true data
Second term is high =⇒ 1−D(G(z)) is close to 1 : D is not getting fooled by G
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Generative Adversarial networks

At the beginning of the training, the examples from G are not very good : D can spot them
easily

At the end of training, the discriminator should not be able to tell the true data from the
generated data : pG = pdata. At this point L(G,D) = − log(4)

Optimisation alternates between minimisation and maximisation steps
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Generative Adversarial networks

Here are some results of the original GAN paper∗

In the space of four years, these results have been vastly improved on

There are many, many GAN variants. We present a few now
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∗Generative Adversarial Nets, Goodfellow et al, NIPS 2014



Conditional Generative Adversarial networks

The Conditional GAN allows a label c to be added to the loss function

It is then possible to generate examples of a given class

min
G

max
D

[logD(x|c)] + [log (1−D(G(z|c)))]
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∗Conditional Generative Adversarial Nets, Mirza, M. and Osindero, S., arXiv preprint arXiv:1411.1784, 2014



Generative Adversarial networks

Examples of results of Conditional GAN
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∗Conditional Generative Adversarial Nets, Mirza, M. and Osindero, S., arXiv preprint arXiv:1411.1784, 2014



Generative Adversarial networks

GANs have also been modified to carried out domain translation
One of the most well-known networks is Pix-To-Pix†
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† Image-to-Image Translation with Conditional Adversarial Nets, P Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, CVPR, 2017



Generative Adversarial networks

Instead of going from a random code to an image, the GAN learns to map one representation
to another

Can be used for tasks such as data augmentation, image inpainting
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† Image-to-Image Translation with Conditional Adversarial Nets, P Isola, J.-Y. Zhu, T. Zhou, A. A. Efros, CVPR, 2017



Denoising Diffusion Probabilistic Models (DDPM)

Consider a forward diffusion process which progressively adds noise

reversing the process allows to generate new samples x0 ∼ q(x) starting from white noise
xT ∼ N (0, I)
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Deep unsupervised learning using nonequilibrium thermodynamics, Sohl-Dickstein, Jascha, et al., ICML 2015
Denoising diffusion probabilistic models, Ho, Jonathan, et al., NeurIPS 2020



Denoising Diffusion Probabilistic Models (DDPM)

Unconditional CIFAR10 progressive generation
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Denoising diffusion probabilistic models, Ho, Jonathan, et al., NeurIPS 2020
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From Deep Learning to the Earth Sciences

Opportunities
Analogies between the types of data addressed with classical deep learning

Images→ 2-D data fields
Videos→ 2-D data fields evolving in time
Naural language speech signals→ Dynamic time-series of Earth system variables

Tasks such as classification, regression, anomaly detection, and dynamic modeling are
typical problems in both computer vision and geosciences

Challenges
RGB Images 6= Hyperspectral images

Variables are often not i.i.d.
How to integrate multi-modal data?

Geometry
Temporal / Spatial resolution

Sources of noise

No benchmark: many unlabeled data→ Self-Spervised Learning (SSL)
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Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019



From Machine Learning to Earth Sciences

These slides are inspired to the Deep Learning course of Nicolas Thome and the Convolutional
Neural Network course of Alasdair Newson. Many thanks!
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† Illustration from Deep learning and process understanding for data-driven Earth system science, Reichstein, Markus, et al., Nature 2019



Convolutional Layers

Properties of convolution
1 Associativity : (f ∗ g) ∗ h = f ∗ (g ∗ h)

2 Commutativity : f ∗ g = g ∗ f

3 Bilinearity : (αf) ∗ (βg) = αβ(f ∗ g), for (α, β) ∈ R× R

4 Equivariance to translation : (f ∗ (g + τ)) (t) = (f ∗ g)(t+ τ)
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Convolutional Layers

Associativity, commutativity
Associativity+commutativity implies that we can carry out convolution in any order
There is no point in having two or more consecutive convolutions

This is true in fact for any linear map

Equivariance to translation
Equivariance implies that the convolution of any shifted input (f + τ) ∗ g contains the same
information as f ∗ g †

This is useful, since we want to detect objects anywhere in the image
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† if we forget about border conditions for a moment



Convolutional Layers

Note : optimisation of loss w.r.t one parameter wk involves entire image

Weights are “shared” across the entire image

This notion of weight sharing is one of the main justifications of using CNNs

In practice, we do not calculate dwk and dxk ourselves, we use the automatic
differentiation tools of Tensorflow, Pytorch etc.
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2D+feature convolution

Several filters are used per layer, let us say K filters : {w1, . . . , wK}

The resulting vectors/images are then stacked together to produce the next layer’s input
u`+1 ∈ Rm×n×K

u`+1 = [u ∗ w1, . . . , u ∗ wK ]

Therefore, the next layer’s weights must have a depth of K. The 2D convolution with an
image of depth K is defined as

(u ∗ w)y,x =
∑
i,j,k

u(i, j, k) w(y − i, x− j, k)
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Useful explanation : https://towardsdatascience.com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Convolutional layers

Illustration of several consecutive convolutional layers with different numbers of filter

Each layer contains “image” with a depth, where each channel corresponds to a different filter
response

Each layer is a concatenation of several features : rich information
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Useful explanation : https://towardsdatascience.com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215


Convolutional layers - a note on Biases

A note on biases in neural networks : each output layer is associated with one bias

There is not one bias per pixel

This is coherent with the idea of weight sharing (bias sharing)
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The Receptive Field

The region of the image which an individual filter responds to is known as the “receptive field”
of that filter

The receptive field of a deep networks corresponds to that of the filters contained in the last
layer

Convolution + 
subsampling
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Illustration from : Applied Deep Learning, Andrei Bursuc, https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_7/

https://www.di.ens.fr/~lelarge/dldiy/slides/lecture_7/


Denoising autoencoder

Naive autoencoder may lead to overfitting, poor robustness and difficulty to interpret the latent
space

We would like to make the encoder/decoder robust to small perturbations in the input data

One solution : the denoising autoencoder

Denoising autoencoder
Idea : add noise η to the input

L(x) = ‖Φd ◦ Φe(x+ η)− x‖22

Low-dimension 
space of true data
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Autoencoders

Example of autoencoder use : interpolation of complex data

Interpolation of complex data†
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† Generative Visual Manipulation on the Natural Image Manifold, J-Y. Zhu, P. Krähenbühl, E. Schechtman, A. Efros, CVPR 2016
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