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Machine learning and the geosciences

Machine learning in the geosciences

▶Estimation theory–inverse problems were already key in the geosciences:

Sensitivity analysis,
Data assimilation,
Parameter estimation,
Uncertainty quantification,
Ensemble forecasting, etc.

Especially data assimilation (including adjoint modelling) for numerical weather prediction.

▶Machine learning has started to percolate in the field of geosciences about five years ago:

Climate sciences,
Numerical weather prediction,
Ocean sciences,
Land surface and biogeochemichal
processes,
Glaciology, sea-ice models,
Atmospheric chemistry, air quality, etc.
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Machine learning and the geosciences

Emergence of machine learning techniques

▶Why this ML tsunami?
New sparse representations of data that yield better and numerically affordable optimisations.
Relies on comprehensive deep learning libraries (Tensorflow/Keras, PyTorch/Lightening,
Julia/Flux, etc.) powered by Google, Facebook, Apache, Nvidia, etc.

▶Why this ongoing ML hype in the geosciences and in geophysical data assimilation?
Huge success of deep learning (DL) in computer vision, speech recognition and AI in general.
This makes it fashionable in geophysics.
Some of the DL models in vision, speech can be straightforwardly applied to the geosciences.
Forces us to reconsider difficult questions of geophysical DA (e.g., model error). Gives an
alibi to reconsider those questions!
Above all: these libraries efficiently address one of the key issue of variational data
assimilation: adjoint modelling.
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Machine learning and the geosciences

What can ML bring to NWP and data assimilation?

▶Advanced quality control of observations and forecasts.

▶Emulate, build surrogate models for subpart of the main forecast model, for instance
subgrid scale parametrisations, microphysics, convection parametrisations, etc.

▶Bias correction, residual model error correction with application to forecasting and re-analysis.

▶Generate tangent linear and adjoint of emulated components of the model.

▶Postprocessing, downscaling: advanced and nonlinear statistical adaptation and correction,
downscaling, feature detection, feature extraction.

▶ Improvement of existing DA schemes, especially ensemble-based methods. Substitute for the
analysis, refinement and regularisation of existing DA schemes.

[Dueben et al. 2018; Reichstein et al. 2019; Bolton et al. 2019] and many others.
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Offline surrogate model learning
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Offline surrogate model learning With dense and perfect observations

Machine learning for the geosciences with dense and perfect observations

▶ A typical (supervised) machine learning problem: given observations yk of a system, derive a
surrogate model of that system.

J (p) =
Nt∑

k=1

∥∥yk+1 − M(p,yk)
∥∥2
.

▶ M depends on a set of coefficients p (e.g., the weights and biases of a neural network).

▶ This requires dense and perfect observations of the system.

▶ In the geosciences, observations are usually sparse and noisy : we need data assimilation!
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Offline surrogate model learning With sparse and noisy observations

Traditional Bayesian approach to data assimilation

Markov process : x0 x1 x2 · · · xK

Observations : y0 y1 y2 · · · yT−1

M

H

M

H

M

H

M

H

▶Bayesian justification of the weak-constraint 4D-Var
Application of Bayes’ rule over a time window [t0, tK ] with batches of observations yk at each time step tk.
Define x0:K = x0, . . . , xK and y0:K = y0, . . . , yK .
The most general conditional pdf of interest is p(x0:K |y0:K) and reads:

p(x0:K |y0:K) ∝ p(y0:K |x0:K)p(x0:K).

Assuming that the observation errors are Gaussian and uncorrelated in time, with error covariance matrices
R0, . . . , RK , so that:

p(y0:K |x0:K ) =
K∏

k=0

p(yk|xk) ∝ exp

(
−

1
2

K∑
k=0

∥yk − Hk(xk)∥2
R−1

k

)
.

Next, we assume that the prior pdf p(x0:K) is Markovian, i.e. the state xk conditional on the previous state
xk−1 does not depend on all other previous past states:

p(x0:K) = p(x0)
K∏

k=1

p(xk|x0:k−1) = p(x0)
K∏

k=1

p(xk|xk−1).
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Offline surrogate model learning With sparse and noisy observations

Traditional Bayesian approach to data assimilation

▶Bayesian justification of the weak-constraint 4D-Var
Now, we assume Gaussian statistics for the model error which are uncorrelated in time, with zero bias and error
covariance matrices Q1, . . . , QK so that:

p(x0:K) ∝ p(x0) exp

(
−

1
2

K∑
k=1

∥xk − Mk (xk−1)∥2
Q−1

k

)
.

We can assemble the likelihood and prior pieces to obtain the cost function associated to the conditional pdf
p(x0:K |y0:K):

J (x0:K) = − ln p(x0:K |y0:K) (1)

= − ln p(x0) +
1
2

K∑
k=0

∥yk − Hk(xk)∥2
R−1

k

+
1
2

K∑
k=1

∥xk − Mk (xk−1)∥2
Q−1

k

(2)

Unsurprisingly, this is the cost function of the weak-constraint 4D-Var. The associated statistical assumptions
explicitly assume that the model is flawed.
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Offline surrogate model learning With sparse and noisy observations

Bayesian inference of state trajectory and model

▶Bayesian analysis with model parameters
We can piggyback on the previous Bayesian analysis, but now adding the model parameter vector p:

p(x0:K , p|y0:K ) ∝ p(y0:K |x0:K , p)p(x0:K , p) ∝ p(y0:K |x0:K , p)p(x0:K |p)p(p),

which requires to introduce a prior pdf p(p) on the parameters. In the language of Bayesian statistics, this is
called a hierarchical decomposition of the conditional pdf.
As a consequence, the cost function for the state and model parameters problem is

J (x0:K , p) = − ln p(x0:K , p|y0:K )

= − ln p(x0) +
1
2

K∑
k=0

∥yk − Hk(xk)∥2
R−1

k

+
1
2

K∑
k=1

∥xk − Mk (p, xk−1) ∥2
Q−1

k

− ln p(p).

This cost function is again similar to the weak-constraint 4D-var, but (i) p is now part of the control variables,
and (ii) there is a background term on p that may or may not play a role depending on the importance of the
data set.

[Hsieh et al. 1998; Abarbanel et al. 2018; Bocquet et al. 2019]
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Offline surrogate model learning With sparse and noisy observations

Connecting data assimilation and machine learning

▶Machine learning limit
Let us assume that the physical system is fully and directly observed, i.e. Hk ≡ I, and that the
observation errors tend to zero, i.e. Rk → 0. Then the observation term in the cost function is
completely frozen and imposes that xk ≃ yk, so that, in this limit, J (x0:K ,p) becomes

J (p) =
1
2

K∑
k=0

∥yk −Mk (p,yk−1) ∥2
Q−1

k

− ln p(y0,p).

This coincides with the tyical machine learning loss function with Qk ≡ I.

[Bocquet et al. 2019; Bocquet et al. 2020]
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Offline surrogate model learning With sparse and noisy observations

Data assimilation and machine learning unification: Summary

▶Bayesian view on state and model estimation:

p(p, Q1:K , x0:K |y0:K , R0:K) =
p(y0:K |x0:K , p, Q1:K , R0:K)p(x0:K |p, Q1:K)p(p, Q1:K)

p(y0:K , R0:K)
.

▶Data assimilation cost function assuming Gaussian errors and Markovian dynamics:

J (p, x0:K , Q1:K ) =
1
2

K∑
k=0

{
∥yk − Hk(xk)∥2

R−1
k

+ ln |Rk|
}

+
1
2

K∑
k=1

{
∥xk − Mk(p, xk−1)∥2

Q−1
k

+ ln |Qk|
}

− ln p(x0, p, Q1:K ).

−→ Allows to rigorously handle partial and noisy observations.

▶Typical machine learning cost function with Hk ≡ Ik in the limit Rk −→ 0:

J (p) ≈
1
2

K∑
k=1

∥yk − Mk(p, yk−1)∥2
Q−1

k

− ln p(y0, p).

M. Bocquet TDMA 2023, Course on Data assimilation, machine learning and forecasting, Grenoble, France, 5-9 June 2023 12 / 35



Offline surrogate model learning With sparse and noisy observations

Bayesian analysis of the joint problem: Assuming Q1:K is known

▶ If the Q1:K are known, we look for the minima of

J (p, x0:K |Q1:K ) = − ln p(p, x0:K |y0:K , R0:K , Q1:K).

▶Numerical solution through optimization

(1) J (p, x0:K |Q1:K) can be optimized using a full variational approach:

▶ In [Bocquet et al. 2019], J (p, x0:K |Q1:K) is minimized using a full weak-constraint 4D-Var where both
x0:K and p are control variables.
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Offline surrogate model learning With sparse and noisy observations

Bayesian analysis of the joint problem: Assuming Q1:K is known

(2) J (p, x0:K |Q1:K) is minimized using a coordinate descent:

▶ using a weak constraint 4D-Var for x0:K and a variational subproblem for p [Bocquet et al. 2019].

▶ using a (higher-dimensional) strong constraint 4D-Var for x0:K and a variational subproblem for p
[Bocquet et al. 2019].

▶ using an EnKF/EnKS for x0:K and a variational subproblem for p [Brajard et al. 2020; Bocquet et al. 2020].

−→ Combine data assimilation and machine learning techniques in a coordinate descent

(p?,x?
0:K)

y0:K

Initialisation

choose p0

DA step (EnKS)

estimate xa
0:K

ML step (NN)

update p

p0 xa
0:K

p
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Offline surrogate model learning With sparse and noisy observations

Bayesian analysis of the marginal problem: Assuming Q1:K is unknown

▶Focusing on the marginal p(p, Q1:K |y0:K , R0:K ):

p(p, Q1:K |y0:K , R0:K ) =

∫
dx0:K p(p, Q1:K , x0:K |y0:K , R0:K )

yields the loss function
J (p, Q1:K) = − ln p(p, Q1:K |y0:K , R0:K).

▶A MAP solution (minimum of J ) is provided by the EM algorithm. Applying it for the reconstruction of a
dynamical system has been suggested in [Ghahramani et al. 1999], using an extended Kalman smoother, or for the
estimation of subgrid stochastic processes in [Pulido et al. 2018] using an ensemble Kalman smoother (EnKS).

▶An EM solution based on the EnKS has been suggested by [Nguyen et al. 2019] and variants of the algorithms
have been successfully implemented and tested by [Bocquet et al. 2020].
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Offline surrogate model learning Hybrid models

Machine learning for prediction: learning model error

▶ Even though geophysical models are not perfect, they are sometimes already quite good
(especially in NWP)!

▶ Instead of building a surrogate model from scratch, we use the DA-ML framework to build a
hybrid surrogate model, with a physical part and a statistical part:1

Physical model

Statistical model

Hybrid model

▶ In practice, the statistical part is trained to learn the error of the physical model.
▶ In general, it is easier to train a correction model than a full model: we can use smaller NNs

and less training data.
▶ But prone to initialisation shocks.

1[Farchi et al. 2021b; Brajard et al. 2021].
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Offline surrogate model learning Resolvent or tendency correction

Typical architecture of a physical model

▶ The model is defined by a set of ODEs or PDEs which define the tendencies:

∂x
∂t

= ϕ(x). (3)

▶ A numerical scheme is used to integrate the tendencies from time t to t+ δt (e.g.,
Runge–Kutta):

x(t+ δt) = F
(

x(t)
)
. (4)

▶ Several integration steps are composed to define the resolvent from one analysis (or window)
to the next:

M : xk 7→ xk+1 = F ◦ · · · ◦ F(xk). (5)

Resolvent correction

▶ Physical model and of NN are
independent.

▶ NN must predict the analysis increments.
▶ Resulting hybrid model not suited for

short-term predictions.
▶ For DA, need to assume linear growth of

errors in time to rescale correction.

Tendency correction

▶ Physical model and NN are entangled .
▶ Need TL of physical model to train NN!
▶ Resulting hybrid model suited for any

prediction.
▶ Can be used as is for DA.
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Offline surrogate model learning Numerical experiments

Almost identifiable model and perfect observations

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Lorenz 96 model (40 variables)

dxn

dt
= (xn+1 − xn−2)xn−1 − xn + F,

Surrogate model based on an RK2 scheme.
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Offline surrogate model learning Numerical experiments

Almost identifiable model and imperfect observations

▶Very good reconstruction of the long-term properties of the model (L96 model).

▶ Approximate scheme
▶ Fully observed
▶ Significantly noisy observations R = I
▶ Long window K = 5000, ∆t = 0.05
▶ EnKS with L = 4
▶ 30 EM iterations
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Offline surrogate model learning Numerical experiments

Not so identifiable model and perfect observations

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Offline surrogate model learning Numerical experiments

Not so identifiable model and perfect observations

▶ Inferring the dynamics from dense & noiseless observations of a non-identifiable model
The Kuramoto-Sivashinski (KS) model (continuous, 128 variables).
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Offline surrogate model learning Numerical experiments

Two-scale Lorenz model (L05III)

▶The two-scale Lorenz model (L05III) model: 36 slow & 360 fast variables, with equations:

dxn

dt
= ψ+

n (x) + F − h
c

b

9∑
m=0

um+10n,

dum

dt
=
c

b
ψ−

m(bu) + h
c

b
xm/10, with ψ±

n (x) = xn∓1(xn±1 − xn∓2) − xn,
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Offline surrogate model learning Numerical experiments

Non-identifiable model and imperfect observations

▶Good reconstruction of the long-term properties of the model (L05III model).

▶ Approximate scheme
▶ Observation of the coarse modes only
▶ Significantly noisy observations R = I
▶ Long window K = 5000, ∆t = 0.05
▶ EnKS with L = 4
▶ 30 EM iterations
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Offline surrogate model learning Numerical experiments

ECMWF QG model: hybrid surrogate; resolvent or tendencies?

▶ The non-corrected model is a perturbed ECMWF OOPS quasi-geostrophic model.
▶ Noisy observations are assimilated using strong-constrained 4D-Var .
▶ Simple CNNs are trained using the 4D-Var analysis.
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Tendency correction 0.24
True model 0.22

▶ The tendencies corr. is more accurate than the resolvent corr., with smaller NNs and less training data.
▶ The tendencies corr. benefits from the interaction with the physical model.
▶ The resolvent corr. is highly penalised (in DA) by the assumption of linear growth of errors.
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Online surrogate model learning Variational approach

Online model error correction

▶ So far, the model error has been learnt offline: the ML (or training) step first requires a long
analysis trajectory.

▶ We now investigate the possibility to perform online learning, i.e. improving the correction as
new observations become available.2

▶ To do this, we use the formalism of DA to estimate both the state and the NN parameters:

J (p,x) =
∥∥x − xb

∥∥2
B−1

x
+
∥∥p − pb

∥∥2
B−1

p
+

L∑
k=0

∥∥yk − Hk ◦ Mk(p,x)
∥∥2

R−1
k

.

▶ For simplicity, we have neglected potential cross-covariance between state and NN
parameters in the prior.

▶ Information is flowing from one window to the next using the prior for the state xb and for
the NN parameters pb: sequential data assimilation

2[Farchi et al. 2021a]
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Online surrogate model learning Variational approach

Two-scale Lorenz system: online learning

▶ We use the tendency correction approach, with the same simple CNN as before, and still using 4D-Var.
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▶ The online correction steadily improves the model.
▶ At some point, the online correction gets more accurate than the offline correction.
▶ Eventually, the improvement saturates. The analysis error is similar to that obtained with the true model!
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Online surrogate model learning Ensemble Kalman filtering approach
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Online surrogate model learning Ensemble Kalman filtering approach

Online learning with a LEnKF: Augmented state vector

▶ So far, learning was based on variational techniques using all available data. Can one design a
sequential (online) ensemble scheme that progressively updates both the state and the model as
data are collected?

▶ In the following, we make the assumptions:
(i) autonomous and local dynamics,
(ii) homogeneous dynamics or heterogeneous dynamics, or mixed dynamics.

▶Parameters of the model:

p ∈ RNp [global parameters], q ∈ RNq [local parameters].

▶Augmented state formalism [Jazwinski 1970; Ruiz et al. 2013]:

z =

[
x
p
q

]
∈ RNz , with Nz = Nx +Np +Nq.

▶ Just a more ambitious parameter estimation problem!?
Yes! But we have to fill in several critical gaps of the parameter-estimation-via-EnKF literature.
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Online surrogate model learning Ensemble Kalman filtering approach

Online learning with a LEnKF: difficulties

▶ With high-dimensional geophysical models, the use of the EnKF requires localisation.
▶ However, localisation in the state / local–parameter / global–parameter space is tricky!
▶ The assimilation of nonlocal observations radiances requires LEnSRF based on covariance

localisation rather than local domains: this is even trickier!
▶ Ideally, one should increase the ensemble size by one for each global parameter: a challenge

with deep learning!

Table: Summary of the EnKF-ML family of algorithms

Inference problem Dom. Local. Cov. Local. Dom. + Cov. Local.
local obs. only numerically costly

State LETKF [Hunt et al. 2007] LEnSRF [Whitaker et al. 2002] L2EnSRF [Farchi et al. 2019]
State LETKF-ML [Bocquet et al. 2021] LEnSRF-ML [Bocquet et al. 2021] L2EnSRF-ML

+ global param. new implementation3 new implementation not discussed
State LETKF-HML LEnSRF-HML L2EnSRF-HML

+ global & local param. new algorithm new algorithm new algorithm

3new implementations and new algorithms: [Malartic et al. 2022a]
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Illustrations in the climate sciences

Outline

1 Machine learning and the geosciences

2 Offline surrogate model learning
With dense and perfect observations
With sparse and noisy observations
Hybrid models
Resolvent or tendency correction
Numerical experiments

3 Online surrogate model learning
Variational approach
Ensemble Kalman filtering approach

4 Illustrations in the climate sciences
Atmospheric sciences
Sea-ice
GHG emission retrievals

5 References
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Illustrations in the climate sciences Atmospheric sciences

Learning a purely data-driven meterological model from ERA-5 reanalysis

▶True model: A selection of ERA-5 fields in 1979-2018 at 5.625◦.4 ▶DL model: Residual NN at the same
resolution. ▶Forecast skill score of the geopotential at 500hPa as a function of the forecast lead time.5
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4[Rasp et al. 2020]
5[Bocquet et al. 2022]
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Illustrations in the climate sciences Atmospheric sciences

Example of loop order–1 and 3/2, with an hybrid model

▶Marshall-Molteni6 3-layer intermediate QG model: Learning subgrid scale parametrisation at loop order–1 to
perform more accurate forecasts at low resolution (LR) from high resolution simulations (HR).7

Time

t = 0

t = 24h

t = 48h

t = 72h

Truth φHR Error with φLR Error with φLR ⊕ ηHR→LR

▶φLR ⊕ ηHR→LR has also successfully been tested with DA, hence at loop order–3/2.
6[Marshall et al. 1993]
7[Malartic et al. 2022b]
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Illustrations in the climate sciences Sea-ice

Learning dynamics of sea-ice using neural networks

Complex dynamics in sea-ice:

Multifractality
Anisotropy
Stochasticity
(mildly) chaotic

Two neural network types:

Unet (multiscale approach)
ResNet (residual neural network)

With partial convolutions and SE blocks.

Inputs: sea-ice thickness from
NeXtSIM + ERA5
Forcings: 10m air velocity, 2m air
temperature and sea surface
temperature
For several past timesteps
Outputs: 12h sea-ice thickness
evolution

M. Bocquet TDMA 2023, Course on Data assimilation, machine learning and forecasting, Grenoble, France, 5-9 June 2023 34 / 35



Illustrations in the climate sciences GHG emission retrievals

Learning the emissions of urban plumes of greenhouse gases

▶From the segmentation a GHG plume image to the inversion of the associated emission.
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[Dumont Le Brazidec et al. 2022; Dumont Le Brazidec et al. 2023].
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Online learning with a LEnKF: The problems

▶We use the augmented state formalism with local ensemble Kalman filters (EnKFs): LEnSRF
and LETKF, which are keys for scalability.

▶Adequacy and inadequacy between the main LEnKF classes and the estimation of local and
global parameters:

Table: Adequacy (green) and inadequacy (red) between LEnKF types and the estimation of local, global and
mixed parameters. CL refers to covariance localisation and DL refers to domain localisation.

LEnKF type Global parameters Local parameters Mixed set of parameters

LEnSRF (CL) well suited suited unclear
localisation in parameter space? numerically costly solution proposed here

LETKF (DL) only approximate8 well suited unclear
solution proposed here solution proposed here

▶Beware that nonlocal observations require CL!

8[Aksoy et al. 2006]
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Online learning with a LEnKF: The solutions

Table: Summary of the EnKF-ML family of algorithms

Inference problem Dom. Local. Cov. Local. Dom. + Cov. Local.
local obs. only numerically costly

State LETKF [Hunt et al. 2007] LEnSRF [Whitaker et al. 2002] L2EnSRF [Farchi et al. 2019]
State LETKF-ML [Bocquet et al. 2021] LEnSRF-ML [Bocquet et al. 2021] L2EnSRF-ML

+ global param. new implementation9 new implementation not discussed
State LETKF-HML LEnSRF-HML L2EnSRF-HML

+ global & local param. new algorithm new algorithm new algorithm

Main results

New EnKF update formula and new LEnSRF/LETKF algorithms with parameter estimation:
global parameters −→ LETKF-ML, LEnSRF-ML, L2EnSRF-ML,
global and local parameters −→ LETKF-HML, LEnSRF-HML, and L2EnSRF-HML.

9new implementations and new algorithms: [Malartic et al. 2022a]
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Focus on the augmented dynamics and its unstable subspace

▶Augmented dynamics (model persistence or Brownian motion):[
xk

pk

]
7→
[

Fk(xk,pk)
pk

]
▶Assuming (i) N0 is the dimension of the unstable neutral subspace of the reference dynamics,
(ii) Ne is the size of the ensemble, then, in order for the augmented global EnKF (EnKF-ML) to
be stable, we must have: Ne ⪆ N0 +Np + 1.
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Focus on the LEnSRF-ML update and global parameters

▶Covariance localisation in the augmented space:

Bxx = ρxx ◦
[

Xf
x
(

Xf
x
)⊤
]
, Bpx = ρpx ◦

[
Xf

p
(

Xf
x
)⊤
]

= B⊤
xp, Bpp = ρpp ◦

[
Xf

p
(

Xf
p
)⊤
]
.

▶The localisation matrix ρxx almost certainly makes Bxx positive definite.

▶The localisation matrix ρpx has to be uniform with respect to space because the parameters are
global. This yields10:

ρ =
[

ρxx 1xζ⊤
p

ζp1⊤
x ρpp

]
, (6)

where ζp ∈ RNp is a vector of tapering coefficients.

▶The positive definitness of ρ generates constraints on ζp. A sufficient condition for positive
definitness of ρ is:

∥ζp∥ ≤

√
λmin

p λmin
x

Nx
, (7)

where λmin
p , λmin

x are the smallest eigenvalues of ρpp,ρxx, respectively.

10[Ruckstuhl et al. 2018; Bocquet et al. 2021; Malartic et al. 2022a]
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Numerical illustration on the inhomogeneous Lorenz96 model (L96i)

▶We use the LEnKF-HML on the L96i model, i.e. with unknown dynamics (global parameters)
and unknown inhomogeneous forcings (40 local parameters).
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Figure: Time-averaged state analysis RMSE as a function of the ensemble size with the LEnSRF-HML (in blue)
and the LETKF-HML (in yellow). For reference, the red line shows the scores obtained with the LETKF when
the model is known.
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Numerical illustration on the multi-layer L96 model (mL96)

▶The mL96 model11 is a vertical stack of Nv = 32 coupled (atmospheric) layers, each layer being
a L96 model with Nh = 40 variables. The total state dimension is hence Nx = Nh ×Nv = 1280,
and the model’s equations are :

dxv,h

dt
= (xv,h+1 − xv,h−2)xv,h−1 − xv,h + Fv,h + Γv+1,h − Γv,h, (8)

where xv,h is the h-th horizontal variable of the v-th vertical layer.

▶The h index applies periodically in {1, . . . , Nh}. The forcing term F is inhomogeneous; it is set
constant over each layer and decreases from F1,h = 8 for the bottom layer to FNv,h = 4 for the
top layer.

▶The last two terms correspond to the vertical coupling between adjacent layers, with

Γv,h ≜
{

xv,h − xv−1,h if 2 ≤ v ≤ Nv,
0 otherwise. (9)

▶We use the L2EnSRF-HML on the observations of mL96, with unknown dynamics (global
parameters) and unknown inhomogeneous forcings (local parameters).

11[Farchi et al. 2019]
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Numerical illustration on the multi-layer Lorenz96 model

▶Nonlocal radiance-like observations (averaging kernel for each of the 8 satellite channels
without (left panel) and with (right panel) normalisation.)
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▶Numerical results (RMSEs):

Inference problem N0 Algorithm Model Loc. Ne state RMSE

1: x ≈ 50 EnSRF mL96 ≥ 50 0.08
L2EnSRF mL96 ✓ ≥ 10 0.08

2: (x, a, fv, fh) ≈ 50 + 88 EnSRF-HML sur (a, fv, fh) ≥ 140 0.11
L2EnSRF-HML sur (a, fv, fh) ✓ 50 0.12

M. Bocquet TDMA 2023, Course on Data assimilation, machine learning and forecasting, Grenoble, France, 5-9 June 2023 7 / 7


	Machine learning and the geosciences
	Offline surrogate model learning
	With dense and perfect observations
	With sparse and noisy observations
	Hybrid models
	Resolvent or tendency correction
	Numerical experiments

	Online surrogate model learning
	Variational approach
	Ensemble Kalman filtering approach

	Illustrations in the climate sciences
	Atmospheric sciences
	Sea-ice
	GHG emission retrievals

	References
	References
	Appendix

