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Synopsis of the course

Tuesday, June 6 16:00-17:30
Lecture 1: Principles of geophysical data assimilation. The Bayesian standpoint.
Classical methods of data assimilation: 3D-Var, the Kalman filter, 4D-Var, the
ensemble Kalman filter.
Wednesday, June 7, 09:00-10:30
Lecture 2: Combining data assimilation and machine learning: Machine learning
and the geosciences. Surrogate modelling, offline and online. Illustrations in the
climate sciences.
Thursday, June 8, 09:00-11:00
Lecture 3: Training session: Learning dynamics and surrogate modelling.
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Data assimilation: principles Introduction

Data assimilation (DA) in the geosciences

Data assimilation
best combines

observations and models

Expanded from numerical weather prediction to the climate science/geosciences:

Oceanography
Atmospheric chemistry
Climate prediction and assessment
Glaciology, sea-ice.

Hydrology and hydraulics
Geology
Space weather
and many other fields
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Data assimilation: principles Introduction

Data assimilation: an inference problem

▶ Inference is the process of taking a decision based on limited information.

▶ Information comes from
an approximate knowledge about the laws (if any) governing the time evolution of
the dynamical system
imperfect (partial, noisy, indirect) observations of this system

▶Sequential inference is the problem of updating our knowledge about the system each
time a new batch of observations becomes available.
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Data assimilation: principles Introduction

First ingredient: the dynamical model

▶We will assume that a model of the natural process of interest is available as a discrete
stochastic dynamical system,

xk = Mk:k−1(xk−1, λ) + ηk.

▶xk ∈ RNx and λ ∈ RNp are the model state and parameter vectors respectively.

▶Mk:k−1 : RNx → RNx is usually a nonlinear, possibly chaotic, map from tk−1 to tk.

▶ηk ∈ RNx is the model error, represented as a stochastic additive term (more general
representations are possible).
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Data assimilation: principles Introduction

First ingredient: the dynamical model

▶ In the geosciences:
The state space dimension is huge (up to 109 for operational systems, up to 107 for
research systems). A big data problem with costly models to integrate.
Numerical models (i.e. implementation of M) are often computationally very costly.
The unstable dynamics of chaotic geofluids has implicit consequences on the design
of DA algorithms: One key reason why we use sequential inference.

ECMWF IFS: Geopotential at 500hPa E3SM Earth system model
and temperature at 850hPa
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Data assimilation: principles Introduction

Second ingredient: the observations

▶Noisy observations, yk ∈ RNy , are available at discrete times and are related to the
model state vector through

yk = Hk(xk) + ϵk,

with H : RNx → RNy being the (generally nonlinear) observation operator mapping from
the model to the observational space.

▶The observation error, ϵk, is represented as a stochastic term. It accounts for the
instrumental error, for deficiencies in the formulation of H, and for the representation
error.

▶The representation error arises from the presence of unresolved scales and represents
their effect on the resolved scales – it is ubiquitous in physical science and inherent to
the discretisation procedure [Janjić et al. 2018].

▶We assume that the observation dimension is constant, so that Ny(k) ≡ Ny (the
generalisation is simple). Remark: often Ny ≪ Nx, i.e. the amount of available data is
insufficient to fully describe the system.
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Data assimilation: principles Introduction

Second ingredient: the observations

▶ In the geosciences: The observation space dimension is huge (up to 107 for operational
systems, up to 106 for research systems). A big data problem.

▶The Earth observations gather
measurements of many sources:
conventional and space-borne.
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Data assimilation: principles Bayesian framework

Hidden Markov model

▶Considering the states and observations as random variables, the dynamical model,
together with the observation model, define a Hidden Markov model:

Markov model

x1 x2 x3 xk
M2:1 M3:2

y1 y2 y3 yk

H1 H2 H3 Hk

▶This is an inverse problem: Estimate the state x given the observation y.

▶Data assimilation for forecasting chaotic geofluids: sequential schemes

Observation

Model (forecast)

H
Analysis

Observation

Model (forecast)

H
Analysis

Observation

Model (forecast)

H
Analysis
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Data assimilation: principles Bayesian framework

Bayesian inference

▶When making inference we have to decide how much we trust the uncertain
information. We need to quantify the uncertainty.

▶Given the random nature of the problem,
uncertainty quantification is achieved using probabilities.

▶The Bayesian approach offers a natural mathematical framework to understand and
formalise this problem.

▶ In particular, the goal of Bayesian inference is to estimate the uncertainty in x given y,
i.e compute the conditional probability density function (pdf) p(x|y).
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Data assimilation: principles Bayesian framework

Bayesian inference

▶Bayes/Laplace’s rule:

p(x|y) = p(y|x)p(x)
p(y)

with p(y|x) the likelihood of the observations, p(x) the prior/background on the
system’s state, and p(y) the evidence. The evidence is a normalisation factor that does
not depend on x:

p(y) =
∫

dx p(y|x)p(x) .

▶This is a probabilistic approach. It quantifies the uncertainty/the information. It does
not provide a deterministic estimator. This would require to make a choice on top of
Bayes’rule.

▶The Bayesian approach is very satisfactorily [Jaynes 2003]. Most DA methods can be
derived or comply with Bayes’rule.
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Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

▶Recall our HMM given by the dynamical model and observation model:

xk = Mk:k−1(xk−1, λ) + ηk, yk = Hk(xk) + ϵk.

▶The model and the observational errors, {ηk}k=1,...,K , {ϵk}k=0,...,K are assumed to
be uncorrelated in time, mutually independent, and distributed according to the pdfs pη

and pϵ.

▶ Let us define the sequences of system states and observations within the interval
[t0, · · · , tK ] as xK:0 = {xK , xK−1, · · · , x0} and yK:0 = {yK , yK−1, · · · , y0}
respectively.

We wish to estimate the posterior p(xK:0|yK:0) for increasing K. Using Bayes’rule:

p(xK:0|yK:0) ∝ p(yK:0|xK:0)p(xK:0).
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Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

▶Since the observational errors are assumed to be uncorrelated in time we have
p(yk|xK:0) = p(yk|xk) and we can split the global likelihood:

p(yK:0|xK:0) =
K∏

k=0

p(yk|xk) =
K∏

k=0

pϵ (yk − Hk(xk)) .

▶Also, in virtue of the Markov property we have p(xk+1|xk:0) = p(xk+1|xk) (prediction
at tk+1 only depends on the state at tk), and we can split the global prior as

p(xK:0) = p(x0)
K∏

k=1

p(xk|xk−1) = p(x1)
K∏

k=0

pη (xk − Mk:k−1(xk−1)) .
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Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

▶By combining these equations using Bayes’rule we get the posterior distribution

p(xK:0|yK:0) ∝ p(x0)p(y0|x0)
K∏

k=1

p(yk|xk)p(xk|xk−1)

∝ p(x0)pϵ (y0 − H0(x0))
K∏

k=1

pϵ (yk − Hk(xk)) pη (xk − Mk:k−1(xk−1)) .

▶This equation is of central importance: it states that a new update can be obtained as
soon as new observations are available.

▶Sequential inference can be obtained by recursively estimating p(yk|xk)p(xk|xk−1).

▶The Bayesian formalism has all the qualities we wish for except that it does not lend to
a closed form, analytically tractable solution.

M. Bocquet TDMA 2023, Course on Data assimilation, machine learning and forecasting, Grenoble, France, 5-9 June 2023 15 / 52



Data assimilation: principles Bayesian framework

Sequential Bayesian estimation

▶Thanks to the main result on the HMM:

p(xK:0|yK:0) ∝ p(x0)p(y0|x0)
K∏

k=1

p(yk|xk)p(xk|xk−1)

we can define the following sequential algorithm to iteratively compute it:

p(xk:0|yk:0) ∝ p(yk|xk)p(xk|xk−1)p(xk−1:0|yk−1:0).

▶An analysis step, in which the conditional pdf p(xk|yk:0) is updated using the latest

observation vector, yk,

p(xk|yk:0) ∝ pη (yk − Hk(xk)) p(xk|yk−1:0),

▶which alternates with a forecast step that propagates this pdf, using the
Chapman-Kolmogorov equation, forward in time until the new observation batch:

p(xk+1|yk:0) =
∫

dx pη (xk − Mk:k−1(xk−1)) p(xk|yk:0)

to get p(xk+1|yk:0).
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Data assimilation: principles Goals and practical tools of data assimilation

Main goals of data assimilation

t0 t1 t2 tK tK+1 tK+2

Past Future

▶Recall xK:0 = {x0, x1, . . . , xK}, yK:0 = {y0, y1, . . . , yK}:
Prediction: Estimate xk for k > K, knowing yK:0,
Filtering: Estimate xK , knowing yK:0,
Smoothing: Estimate xK:0, knowing yK:0.

▶ Less formal names:
hindcasting, nowcasting and forecasting,
reanalysis,
parameter estimation.
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Data assimilation: principles Goals and practical tools of data assimilation

Mathematical methods in DA

▶ Introduction of mathematical methods in operational numerical weather prediction:

1950 1975 1998 2005 2015

Objective
Analysis

Optimal Interpolation
3D-Var

4D-Var EnKF Hybrid/EnVar

Optimisation Linear Regression Optimal Control
Kalman Filtering

Monte Carlo

Dynamics Model Forecast Adjoint Model Ensemble Forecast

▶Using increasingly complex mathematical methods and increasingly resolved
high-dimensional models.
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Focus on a key elementary derivation
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Focus on a key elementary derivation

Gaussian approximation

▶A key to obtain a (approximate) solution is to truncate the errors to second-order
moments ∼ the Gaussian approximation. Most of DA methods are fully or partially
based on this assumption.

▶The elementary building block of DA schemes is the statistical BLUE (Best Linear
Unbiased Estimator) analysis. Time is considered fixed. H is assumed linear.

y = Hx + ϵo, xb = x + ϵb,

where ϵo ∼ N (0, R), and ϵb ∼ N (0, B).

▶Solution:
xa = xb + K

(
y − Hxb)

K = BH⊤ (
R + HBH⊤)−1

Pa = (I − KH) B.

yxb xa
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Focus on a key elementary derivation

Error statistics – Assumptions and definitions

▶xt is defined as the true unknown state.

▶Observation error statistics:

ϵo = y − Hxt with E[ϵo] = 0, E
[
ϵoϵo⊤]

= R,

which is in particular satisfied if ϵo ∼ N (0, R).

▶Background error statistics:

ϵb = xb − xt with E[ϵb] = 0, E
[
ϵbϵb⊤

]
= B, E

[
ϵbϵo⊤]

= 0.

▶Analysis error statistics:

ϵa = xa − xt with E[ϵa] = 0, E
[
ϵaϵa⊤]

= Pa.
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Focus on a key elementary derivation

Linear unbiased Ansatz for the estimate

▶General Ansatz, linear in the observation and the first guess:

xa = Lxb + Ky.

▶Writing it in terms of errors:

xa − xt = L
(
xb − xt + xt) + K

(
Hxt + ϵo)

− xt,

ϵa = Lϵb + Kϵo + (L + KH − I) xt.

Then E[ϵo] = 0 and E[ϵb] = 0 imply E[ϵa] = (L + KH − I)E[xt].
Hence, we wish to impose

L = I − KH.

▶As a result, we obtain a linear and unbiased Ansatz:

xa = (I − KH)xb + Ky,

xa = xb + K (y − Hxb)︸ ︷︷ ︸
innovation

.
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Focus on a key elementary derivation

Best linear unbiased estimator

▶Posterior error:
ϵa = ϵb + K(ϵo − Hϵb),

so that

Pa = E
[
(ϵa)(ϵa)⊤]

= E
[(

ϵb + K(ϵo − Hϵb)
) (

ϵb + K(ϵo − Hϵb)
)⊤

]
= E

[(
Lϵb + Kϵo) (

Lϵb + Kϵo)⊤
]

= E
[
Lϵb(ϵb)⊤L⊤)

]
+ E

[
Kϵo(ϵo)⊤K⊤]

= LBL⊤ + KRK⊤,

In summary:
Pa = (I − KH)B(I − KH)⊤ + KRK⊤.

▶We look for a metric as a global measure of the error. For instance Tr(Pa). Let us
find the optimal K that minimises this metric.
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Focus on a key elementary derivation

Best linear unbiased estimator

▶Variation of the metric with respect to a variation of K, i.e. δK:

δ(Tr(Pa)) = Tr
(
(−δKH)BL⊤ + LB(−δKH)⊤ + δKRK⊤ + KRδK⊤)

= Tr
(
(−LB⊤H⊤ − LBH⊤ + KR⊤ + KR)(δK)⊤)

= 2Tr
(
(−LBH⊤ + KR)(δK)⊤)

.

▶At optimality, one infers that −(I − K⋆H)BH⊤ + K⋆R = 0, from which we obtain

K⋆ = BH⊤(R + HBH⊤)−1,

from which we get the BLUE solution:
xa = xb + K

(
y − Hxb)

K = BH⊤ (
R + HBH⊤)−1

Pa = (I − KH) B.
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Main techniques
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Main techniques

3D-Var and BLUE in the linear case: derivation

▶ 3D-Var cost function:

J(x) = 1
2∥x − xb∥2

B−1 + 1
2∥y − Hx∥2

R−1 , with ∥x∥2
A = x⊤Ax.

▶ Let us minimise J and compute the variation of J(x) with respect to a variation of x:

δJ(x) = 1
2 (δx)⊤ B−1 (

x − xb)
+ 1

2
(
x − xb)⊤ B−1δx

+1
2 (−Hδx)⊤ R−1 (y − Hx) + 1

2
(
xb − Hx

)
R−1 (−Hδx)

= (δx)⊤ B−1 (
x − xb)

− (δx)⊤ H⊤R−1 (y − Hx)

= (δx)⊤ ∇J .

▶The extremum condition is ∇J = B−1(x⋆ − xb) − H⊤R−1(y − Hx⋆) = 0, which
yields:

x⋆ = xb + (B−1 + H⊤R−1H)−1H⊤R−1︸ ︷︷ ︸
K⋆

(y − Hxb) .

Thanks to the Sherman-Morrison-Woodbury identity,

K⋆ = (B−1 + H⊤R−1H)−1H⊤R−1 = BH⊤ (
R + HBH⊤)−1

.

−→ x⋆ coincides with the BLUE optimal analysis xa.
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Main techniques 3D-Var and optimal interpolation

3D-Var and optimal interpolation

▶Variational formulation of the same problem

J(x) = 1
2∥x − xb∥2

B−1 + 1
2∥y − Hx∥2

R−1 ,

which is equivalent to BLUE.

▶Probabilistic/Bayesian interpretation:

p(x|y) ∝ e−J(x)
yxb xa

▶Capable of handling a nonlinear observation operator using standard nonlinear
optimisation methods:

J(x) = 1
2∥x − xb∥2

B−1 + 1
2∥y − H(x)∥2

R−1 .
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Main techniques 3D-Var and optimal interpolation

Chaining the analyses in time

▶Chaining the BLUE/3D-Var cycles:
1 Analysis with a forecast at tk: xf

k and with static information B: xa
k,

2 Forecast to tk+1: xf
k+1 = Mk+1:k(xa

k).

▶Also known as optimal interpolation
(if the analysis step is BLUE).

▶Relatively cheap. Used in oceanogra-
phy, atmospheric chemistry. Requires
a smart construction of B.

▶But the information about the errors
is not propagated in time. . .

t1 t2 t3 t4 t5

0.0

0.2

0.4

0.6

0.8

1.0
truth
3D-Var
observation
analysis
forecast

Observation y,R

xf

B

Analysis xa

Observation

Model

y,R

xf

B

Analysis xa

Observation

Model

y,R

xf

B

Analysis xa
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Main techniques The Kalman filter

The Kalman filter

▶Similar to optimal interpolation. But, now, we want to replace the static B with a
dynamic Pf which needs updating and propagating.

▶Analysis step:

xa
k = xf

k + Kk

(
yk − Hkxf

k

)
,

Kk = Pf
kH⊤

k

(
Rk + HkPfH⊤

k

)−1
,

Pa
k = (I − KkHk) Pf

k.

▶Forecast step:

xf
k+1 = Mk+1:kxa

k,

Pf
k+1 = Mk+1:kPa

kM⊤
k+1:k + Qk+1.

Observation y,R

xf

Pf

Analysis xa

Pa

Observation

Model

TLM

y,R

xf

Pf

Analysis xa

Pa

Observation

Model

TLM

y,R

xf

Pf

Analysis xa

Pa
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Main techniques The Kalman filter

The extended Kalman filter

▶Optimal if the model and observation operators are linear and if all the initial and
observations errors are Gaussian: it gives the exact Gaussian solution of Bayes’ rule.

▶Can be extended to nonlinear models with:

xf
k+1 = Mk+1:k(xa

k),

Pf
k+1 = Mk+1:kPa

kM⊤
k+1:k + Qk+1,

where Mk+1:k is the tangent linear model (linearisation at xa
k) of Mk+1:k.

▶Extremely costly for large geophysical models: storage space (storage of Pf) and
computations (Mk+1:kPf

kM⊤
k+1:k requires 2Nx integrations of the model).

▶Solutions: The reduced-rank / ensemble Kalman filters (wait for the end of the
lecture).
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Main techniques The Kalman filter

The extended Kalman filter: numerical illustration

▶Anharmonic oscillator:
d2x

d t2 − Ω2 x + Λ2 x3 = 0,

whose numerical implementation is

x0 = 0 , x1 = 1 and for 1 ≤ k ≤ N : xk+1 − 2xk + xk−1 = ω2 xk − λ2 x3
k.

−→ Equations for a material dot in a double well potential V (x) = − 1
2 Ω2x2 + 1

4 Λ2x4.

▶Markovian dynamics with an augmented state vector:

uk =
[

xk

xk−1

]
,

with the augmented dynamics

Mk+1:k =
[

2 + ω2 − λ2x2
k −1

1 0

]
,

yields
uk+1 = Mk+1:k(uk).

▶Hk = [1, 0]. The observation equation is yk = Hkuk + ϵk.
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Main techniques The Kalman filter

The extended Kalman filter: numerical illustration

▶Comparison with the EnKF that does not rely on the tangent linear approximation.
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Main techniques The Kalman filter

The extended Kalman filter: numerical illustration

▶Comparison with the EnKF that does not rely on the tangent linear approximation.
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Main techniques 4D-Var

4D-Var

▶Strongly constrained 4D-Var, i.e. assuming the model is perfect (no model error)

J(x0) = 1
2∥x0 − xb

0 ∥2
B−1 + 1

2

K∑
k=0

∥yk − Hk(xk)∥2
R−1

k

,

under the constraints that xk+1 = Mk+1:k(xk) for k = 0, . . . , K − 1.

▶Fits a model trajectory through the 4D data points.

t1 t2 t3 t4 t5

0.0

0.2

0.4

0.6

0.8

1.0
truth
4D-Var
observation
analysis
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Main techniques 4D-Var

4D-Var: algorithm

▶ Lagrangian for 4D-Var:

L(xK:0, λk:0) = 1
2∥x0−xb

0 ∥2
B−1 +1

2

K∑
k=0

∥yk−Hk(xk)∥2
R−1

k

+
K∑

k=1

λ⊤
k (xk − Mk:k−1(xk−1)) .

▶Gradient of the Lagrangian with respect to xK:0:

∇x0 L(x0) = B−1 (
x0 − xb

0
)

− H⊤
0 R−1

0 (y0 − H0(x0)) − M⊤
1:0λ1,

∇xk L(x0) = −H⊤
k R−1

k (yk − Hk(xk)) − M⊤
k+1:kλk+1 + λk,

∇xK L(x0) = −H⊤
KR−1

K (yK − HK(xK)) + λK .

▶Requires the computation of the tangent linear and adjoint of Hk and Mk+1:k.

▶No perfect (general purpose) automatic differentiation tool: developing and
maintaining the adjoint codes is computationally very costly!
−→ written 2019 – this has changed! – more on this tomorrow!
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Main techniques 4D-Var

4D-Var: algorithm

▶Algorithm: one outer loop
1 Given the initial condition x0, compute the trajectory xK:0 with the dynamical

model M.
2 Compute the adjoint trajectory backwards in time:

λK = H⊤
KR−1

K (yK − HK(xK)) ,

λk = H⊤
k R−1

k (yk − Hk(xk)) − M⊤
k+1:kλk+1,

λ0 = H⊤
0 R−1

0 (y0 − H0(x0)) − M⊤
1:0λ1.

3 This finally yields:
∇x0 J(x0) = B−1 (

x0 − xb
0
)

− λ0.

▶Can be used to feed any gradient-based minimisation scheme (Newton, Gauss-Newton,
L-BFGS, conjugate-gradient, Levenberg-Marquardt, trust region methods).
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Main techniques 4D-Var

4D-Var: algorithm

▶For high-dimensional systems: incremental strategy with outer/inner loops.
The inner-loop Lagrangian, which is quadratic in δxK:0, is

L(p)(δxK:0, λk:0) =1
2∥x(p)

0 − xb
0 + δx0∥2

B−1 + 1
2

K∑
k=0

∥yk − Hk(x(p)
k ) + H(p)(δxk)∥2

R−1
k

+
K∑

k=1

λ⊤
k

(
x(p)

k+1 − Mk+1:k(x(p)
k ) − M(p)

k:k−1(δxk−1)
)

.

It can efficiently be solved using a conjugate-gradient algorithm.
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Main techniques 4D-Var

4D-Var: algorithm

▶ Let us assume Gaussian model error:

xk = Mk:k−1(xk−1) + ηk, ηk ∼ N (0, Qk).

▶Weakly constrained 4D-Var, i.e. assuming the model is imperfect [Trémolet 2006]

J(xK:0) = 1
2∥x0−xb

0 ∥2
B−1 + 1

2

K∑
k=0

∥yk−Hk(xk)∥2
R−1

k

+ 1
2

K∑
k=1

∥xk−Mk:k−1(xk−1)∥2
Q−1

k

.

▶Adds much flexibility to trajectory fitting.

▶Huge control variables (K times bigger) for a very specific form of model error. . .
−→ A simplified variant of weakly constrained 4D-Var has been implemented in the top
layers of the IFS to correct a large bias [Laloyaux et al. 2020].
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter

▶The idea [Evensen 1994; Houtekamer and Mitchell 1998] is to make the KF work in high
dimensions and replace P (Pa and Pf) with an ensemble of states x1, x2, . . . , xNe .
The moments of the error could theoretically be approximated by the sample/empirical
moments:

xf = 1
Ne

Ne∑
i=1

xf
i, Pf ≈ 1

Ne − 1

Ne∑
i=1

(
xf

i − xf) (
xf

i − xf)⊤
.

▶Define the normalised anomaly or perturbation matrix ∈ RNx×Ne

[Xf ]i = xf
i − xf

√
Ne − 1

=⇒ Pf ≈ XfX⊤
f .

Likewise

xa = 1
Ne

Ne∑
i=1

xa
i , Pa ≈ XaX⊤

a where [Xa]i = xa
i − xa

√
Ne − 1

.
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter: Ansatz and mean update

▶An educated guess would suggest, for i = 1 . . . Ne:

xa
i = xf

i + K
(
y − Hxf

i

)
.

but the correct answer is actually

xa
i = xf

i + K
(
y + ϵi − Hxf

i

)
.

where ϵi is a stochastic noise sampled from N (0, R), for each member.

▶Checking the mean: on average, and summing over the ensemble members:

xa = xf + K
(
y − Hxf) ,

which is the same as the Kalman filter’s mean update.
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter: perturbations update

▶Checking the ensemble update: on average, does it mimic the Kalman filter?
We define

ϵ = 1
Ne

Ne∑
i=1

ϵi, Θ = 1√
Ne − 1

[ϵ1 − ϵ ϵ2 − ϵ · · · ϵNe − ϵ] .

The perturbations update then reads (ensemble minus the mean):

Xa = (Ix − KH)Xf + KΘ,

which yields the empirical analysis error covariances:
Pa = (Ix − KH)Pf(Ix − KH)⊤ + KΘΘ⊤K⊤ + (Ix − KH)XfΘ⊤K⊤ + KΘX⊤

f (Ix − KH)⊤,

whose average on Θ is

E[Pa] = (Ix − KH)Pf(Ix − KH)⊤ + KRK⊤ = (Ix − KH)Pf .

The last identity is valid if K is the (optimal) Kalman gain.

▶ In the absence of the observation stochastic noise, the posterior error statistics
would be incorrect!
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter: forecast

▶Kalman gain representations:
Empirical: denoting Yf = HXf + Θ, we have K = XfY⊤

f
(
YfY⊤

f
)−1

Deterministic: denoting Yf = HXf , we have K = XfY⊤
f

(
R + YfY⊤

f
)−1

▶Forecast step: The ensemble is propagated using the full nonlinear model

xf
i,k+1 = Mk+1:k

(
xa

i,k

)
,

whereas the extended Kalman filter uses the tangent linear model.

▶Numerically costly (Ne propagations) but
the forecast scheme is embarrassingly parallel,
no need to derive the tangent linear model of the full model.
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter: surrogate for H

▶ Instead of estimating PfH⊤ = XfY⊤
f and HPfH⊤ = YfY⊤

f in the Kalman gain, we
can use the ensemble:

yf = 1
Ne

Ne∑
i=1

H(xf
i),

PfH⊤ = 1
Ne − 1

Ne∑
i=1

(
xf

i − xf) [
H(xt

i) − yf]⊤
,

HPfH⊤ = 1
Ne − 1

Ne∑
i=1

[
H(xf

i) − yf] [
H(xf

i) − yf]⊤
.

These approximations rely on the key assumption:

[Yf ]i = H
(
xf

i − xf) ≈ H(xf
i) − yf .

▶This is sometimes called the secant method (alternative to finite-differences).
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Main techniques The ensemble Kalman filter

The ensemble Kalman filter: a bunch of methods

▶Two main flavors of EnKFs: stochastic and deterministic, but many variants.

EnKF

stochastic EnKF

deterministic EnKF

EnSRF/EAKF

serial EnSRF

ETKF

DEnKF

▶Several significant precursors and alternatives: reduced-rank square-root Kalman filter,
SEEK, SEIK, unscented Kalman filter, etc.

M. Bocquet TDMA 2023, Course on Data assimilation, machine learning and forecasting, Grenoble, France, 5-9 June 2023 44 / 52



Main techniques The ensemble Kalman filter

Localisation

▶Covariance localisation seeks to regularise the sample covariance to mitigate the
rank-deficiency of Pe and the appearance of spurious correlations.

▶Solution: compute the Schur product of Pe with a well chosen smooth correlation
matrix ρ, that has exponentially vanishing correlations for distant parts.

The Schur product of ρ and B is defined by (tapering of covariances)

[ρ ◦ Pe]ij = [ρ]ij [Pe]ij . (1)

Applicable only if the long-range error correlations are negligible.

▶The Schur product theorem ensures that this product is positive semi-definite, a proper
covariance matrix. For sufficiently regular ρ, ρ ◦ Pe turns out to be full-rank.
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Main techniques The ensemble Kalman filter

Covariance localisation with the Gaspari-Cohn function
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Panel (a): True covariance matrix. Panel (b): Sample covariance matrix.
Panel (c): Gaspari-Cohn based correlation matrix used for covariance localisation.
Panel (d): Tapered covariance matrix.
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Main techniques The ensemble Kalman filter

Domain localisation

▶Domain localisation: divide & conquer.

The DA analysis is performed in parallel in
local domains. The outcomes of these
analyses are later sewed together.

Applicable only if the long-range error
correlations are negligible.

Elegant but nor suited for the assimilation
of non-local observations such as radiances.

x

•

•

•

•

•

•

•

•

•

•

Local update

Observation

▶Both localisation schemes have successfully been applied to the EnKF [Hamill et al. 2001;
Houtekamer and Mitchell 2001; Evensen 2003; Hunt et al. 2007].
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Main techniques The ensemble Kalman filter

Inflation

▶ Localisation addresses the rank-deficiency issue, but sampling errors are not entirely
removed in the process: long EnKF runs may ultimately diverge!

▶Ad hoc means to counteract sampling errors is to inflate the error covariance matrix by
a multiplicative factor λ2 ≥ 1:

Pe −→ λ2Pe, (2)
or, alternatively,

x[n] −→ x + λ
(
x[n] − x

)
. (3)

▶ Inflation can also come in an additive form: x[n] −→ x[n] + ϵ[n].

▶Note that inflation is not only used to cure sampling errors, but is also often used to
counteract model error impact.

▶As a drawback, inflation often needs to be tuned, which is numerically costly. Hence,
adaptive schemes have been developed to make the task more automatic [El Gharamti 2018;
Raanes et al. 2019].
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